Base One

L. Van Warren

Start at the beginning...

 1,000
 10,000

What is a placeholder?

128

$1 \cdot 100+2 \cdot 10+8 \cdot 1$

$$
1 \cdot 10^{2}+2 \cdot 10^{1}+8 \cdot 10^{0}
$$

$1 \cdot 100+2 \cdot 10+8 \cdot 1$

$100+2 \cdot 10+8 \cdot 1$

$100+20+8 \cdot 1$

$100+20+8$

100
 20
 8

12

8

Consider Placeholders As Dimensions...

How many placeholders?

Three

How many dimensions in a cube?

How many dimensions in a square?

How many dimensions in a line segment?

How many dimensions in a point?

How many dimensions in a point?

How many symbols in base one?

How many symbols in base one?

How do we count in base one?

Base 1 - Counting

How do we add in base one?

$$
\|+\| \|=\text { ? }
$$

$$
\begin{aligned}
& \|+\|=\text { ? } \\
& \|\quad\| \|
\end{aligned}
$$

$$
\begin{gathered}
\|+\| \|=? \\
\|\|\|\|
\end{gathered}
$$

IIIII

|| + III = |IIIII

Addition is equivalent to Grouping

Grouping is a powerful idea.

Addition
 is "closed" in base one.

Meaning we can represent any sum in the same counting system. (given sufficient time)

How do we subtract In base one?

$$
\|-\operatorname{l|I}=?
$$

$$
\begin{aligned}
& \|-\| \|=?=? ~ \\
& \|\| \\
& \|
\end{aligned}
$$

$$
\|-\||=\underset{\|}{?} \quad||\mid
$$

$$
\|-\||\mid
$$

$$
\|-\|\left\|={ }_{\mid}^{| |}\right\|
$$

$$
\|-\| \|=?
$$

$$
\|-\|=? \quad \|
$$

|| - ||| = ?

|| - ||| = ?

$$
\|-\| \|=? \quad \mid
$$

Subtraction

 is equivalent to Separating
Subtraction is not "closed" in base one.

The antistick requires another bit that makes base two!
|| - ||II = |

The antistick is a negative stick with the annihilation property:

How do we multiply In base one?

|III x ||

The second number

 tells us the number of copies of the first.
|II| \times || $=|||| |$

And visa versa

This demonstrates that multiplication in base one is commutative.

Multiplication is repeated addition.

Multiplication in base one is "closed".

Base One Squares

Squaring is a special case of multiplication.

Choosing a different symbol reminds us of the meaning of "squaring".

$\bullet \bullet \times:=8: 8$

Or:

므즘 $=$ 㗊

How do we find the square root in base one?

"Find the number that when multiplied by itself gives the original number."

If the number is a perfect square, the square root is the length of one side.

?

How do we divide In base one?

Division is repeated subtraction.

ㅁㅁ
$\square \square \square$
$\square \square \square$
$\square \square \square$

 ㅁㅁ

ㄴำดㅁำด

ㅁㅁ

ロロロ
 ㅁㅁ

 ㅁロロロロ
 ㅁㅁ

 ำดロロロロロロ
 ㅁㅁ

 ำดロロロロロロ

 $\square \square \square$

$\square \quad \square \quad \square$

$\square \square \square$

ㅁㅁㅁ

Division, like subtraction is not closed in base one.

ㅁㅁ
ㅁㅁ

Base One Trigonometry

We must introduce some new symbols.

These symbols are not used for counting.

These symbols are containers for copies of our counting symbol.

\square

$\square \square$

믐ㅁ

x

x

\square
 x

$\square \square$
 x

\square

$\square \square$
 x

ㅁ

$\square \square$
 x

\square
 x

$y \square$
 x

$y 母$
 x

0

Name relationships.

0

$\sin (\theta)=\frac{y}{r}$

$\tan (\theta)=\frac{y}{x}$

Base One Probability

Ask some friends to show you a number by holding up their hands.

Then plot the result in base one.

Questions?

