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Calculus Inspiration
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Involute of a circle

Nautilus Shell
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The Case of the Peculiar Limit:
In a previous lecture we discovered that the definite integral:

Has no closed-form solution.

However we are pressed to find that value of the upper-limit a that most 
closely satisfies the following integral equation:

Lecture23-CaseOfThePeculiarLimit.gx  
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The Case of the Peculiar Limit: Lecture23-CaseOfThePeculiarLimit.gx  

Exercise:
Guess the value of a.

The integrals are displayed on the same page using constants C1, C2, and C3.
What value of a produces an area in the bottom two figures that is the same 
as the infinitely wide top area?
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The Case of the Peculiar Limit: Lecture23-CaseOfThePeculiarLimit.wxm  

Using Maxima™ we discover an interesting fact. Although the sin(x)/x integral 
has no finite solution it does have an infinite solution!

We also note it is possible to combine the second two integrals:

These two facts simplify our original equation to:

How close was this result to your original guess?
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The Indefinite Integral: Lecture23-IndefiniteIntegral.gx  

Exercises:
1) Drag C.
2) Redo with f(x) = ex

The indefinite integral is a convenient form of antiderivative:
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Indefinite Vs. Definite Integral:

Lecture23-FamilyOfCurves.gx  

A Family of Curves:
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Variable vs. Constant Limits:

Lecture23-VariableLimits.gx  
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Indefinite Integral – No Guarantee of Existence:
Given f(x) continuous on *a..b+ we can always find f’(x):

But

Finding the derivative is deterministic,

BUT

There is no guarantee that a solution even exists.
Finding the antiderivative, the indefinite integral is a SEARCH.

Exercise: Comment on how this might relate to invertibility.

h 0

f ( x h) f ( x)
f '( x) lim

h

f ( x)dx ?
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Search Strategy:

One strategy for 
finding integrals is to 

differentiate functions 
and go backwards. 

That is, the function 
you are differentiating 

is some other 
problem’s integral!

One can generate vast 
tables this way.
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Let’s say we wanted to find the integral of a function that has never 
been integrated in closed-form, like sin(x)/x. We might start by 
differentiating functions that give results that look like sin(x)/x:

sin( x) sin( x)

x x
dx ?( x) C ?( x)

d

dx
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Lecture23-Nautilus.gx  Lecture23-SinXOverX-A.wxm 
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List Comprehensions:
A list comprehension is just an expression that creates a list:
Here are some examples:

Lecture23-ListComprehensions.wxm  
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Matrices of Functions:

We can also generate a matrix of 
functions, integrals and limits.

Lecture23-MatricesOfFunctions.wxm  

Exercises:
1) Differentiate [H] with respect to x.
2) Take the limit of [H] as xa.
3) Create a matrix of functions [G] by 

replacing sin(x) in h[i,j] with cos(x).
4) Create a 5 x 5 version of the [H] and [G]. 
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Numerical Integration:

For cases where a closed-form solution does not exist, a numerical approach, 
based on the Riemann Sum is useful:

Numerical integration is also called “quadrature”. Can you speculate why?
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Lecture23-NumericalIntegration.gx  
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Numerical Solutions:

Numerical solutions require a finite number of terms for the computation 
to halt. If the computation doesn’t halt, the problem is undecideable and 
no solution is possible using that approach.

Showing that a numerical approximation converges to an exact solution is 
vital for correctness. This issue is explored further in numerical analysis, 
and uses limit techniques learned here.
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Lecture23-Quadrature.gx  
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Net Change Theorem

From the Fundamental Thereom of Calculus we observe,
the integral of the derivative of f(t) in an interval [t1..t2] is
the net change of f(t) in that interval:

2 2 2

1 1 1

t t t

t
2 1

t t

f (t )
f (t ) f (t ) f (t

d
f ' dt d( )

t
d )t t

d

Lecture23-NetChangeTheorem.gx  
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Consider a car whose velocity v(t)
over time is given by the curve:

How far does it travel as it accelerates
from 0 to 60 mph?

Exercises:
1) Adjust t1, t2 and m to discover the distance traveled.
2) Would a car travel this far while decelerating? Theorize.
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Net Change Car Crash Lecture23-NetChangeLinear.gx  
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Right now you are traveling ~   1,000 mph around the center of the earth
and ~ 67,000 mph around the center of the sun.

Try not to hit anything!

The earth rotates 365.25 times around
its own axis for every revolution around the sun.
Exercises:
1) Click the play button to animate , the angle of the earth around the sun.
2) Adjust rs, re and des to realistic values where 1 unit = 1 million miles.
3) What points on a circular earth appear to  intersect themselves? How often?
4) Why would this be important for meteor impact, or for time travel?
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Angular Velocity Lecture23-SunEarthGeometry.gx  

- Don Davis, NASA
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When we integrate in Cartesian coordinates we drew rectangles and 
trapezoids. When we integrate in polar coordinates we draw triangles.
Consider the following equation of a “line” in polar coordinates:

r(T) = mT +b

The height of a given triangle:          r(Ti)
The base    of a given triangle: s = r(Ti) T
The area of the ith triangle is:

Taking the limit we have the area is:

Integration in Radial Coordinates Lecture23-AreaUnderPolarCurve.gx  
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Exercises:
1) Drag the points (m,b), T1 

and T2 to form the area of 
a quarter circle.

2) Compute the real area.
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Exercises:
1) Set up the symbolic integral.
2) Compute the overflow time.
3) Complete the diagram.
4) How long can the shower be?

While attempting to cook, a certain professor has left the kitchen faucet 
on “just for a second”. He checks his email for three minutes and starts a 
shower. There is half a gallon of water in the sink when he starts to check 
his email. The capacity of the sink is 4.85 gallons. Water flows into the sink 
at 0.6 gallons per minute while he checks his email, but slows to 0.4 
gallons per minute while he showers.

Everything But The Kitchen Sink Lecture23-KitchenSink.gx  
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