

Chapter 6: Integration Techniques

Lecture	TOPiC
23	Integration: Cartesian and Polar
24	Integration by Substitution
25	Integration by Parts
26	Area Between Curves

Calculus Inspiration

David Hilbert

PhD. Königsberg 1897
Göttingen University

- FunctionSpaces
- Axiomization of Geometry
- The 23 Problems
- 76 Doctoral Students

16296 Math Descendants

Lecture 23 - Integration: Cartesian and Polar

The Case of the Peculiar Limit:

In a previous lecture we discovered that the definite integral:

$$
\int_{0}^{a} \frac{\sin (x)}{x} d x
$$

Has no closed-form solution.

However we are pressed to find that value of the upper-limit a that most closely satisfies the following integral equation:

$$
\int_{-\infty}^{+\infty} \frac{\sin (x)}{x} d x=\int_{0}^{a} \sin ^{2}(x) d x+\int_{0}^{a} \cos ^{2}(x) d x
$$

The Case of the Peculiar Limit:

The integrals are displayed on the same page using constants C_{1}, C_{2}, and C_{3}. What value of a produces an area in the bottom two figures that is the same as the infinitely wide top area?

Lecture 23 - Integration: Cartesian and Polar

The Case of the Peculiar Limit:

Using Maxima ${ }^{\text {TM }}$ we discover an interesting fact. Although the $\sin (x) / x$ integral has no finite solution it does have an infinite solution!

```
integrate(sin (x)/x, x,-inf,inf);
\pi
\[
\int_{-\infty}^{+\infty} \frac{\sin (x)}{x} d x=\pi
\]
```

We also note it is possible to combine the second two integrals:

$$
\begin{aligned}
\int_{0}^{a} \sin ^{2}(x) d x+\int_{0}^{a} \cos ^{2}(x) d x & =\int_{0}^{a}\left[\sin ^{2}(x)+\cos ^{2}(x)\right] d x \\
& =\int_{0}^{a} d x=a
\end{aligned}
$$

These two facts simplify our original equation to: $\pi=a$

How close was this result to your original guess?

The Indefinite Integral:

The indefinite integral is a convenient form of antiderivative:

$$
\begin{aligned}
& \int f(x) d x=F(x) \quad \text { where } \frac{d}{d x} F(x)=f(x) \\
& \int x^{3} d x=\frac{x^{4}}{4}+C \text { because } \frac{d}{d x}\left(\frac{x^{4}}{4}+C\right)=x^{3}
\end{aligned}
$$

Exercises:

1) $\operatorname{Drag} C$.
2) Redo with $f(x)=e^{x}$

Indefinite Vs. Definite Integral:

A Family of Curves:

$\int f(x) d x=F(x)$

A Specific Area:

Variable vs. Constant Limits:

Indefinite Integral - No Guarantee of Existence:

Given $f(x)$ continuous on [a..b] we can always find $f^{\prime}(x)$:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

But

$$
\int f(x) d x=?
$$

Finding the derivative is deterministic,

BUT

There is no guarantee that a solution even exists.
Finding the antiderivative, the indefinite integral is a SEARCH.
Exercise: Comment on how this might relate to invertibility.

Search Strategy:

One strategy for finding integrals is to differentiate functions and go backwards. That is, the function
you are differentiating
is some other
problem's integral!
One can generate vast
tables this way.

$\frac{d}{d x} \sin (x)=\cos (x)$	$\int \cos (x) d x=\sin (x)+C$
$\frac{d}{d x} \cos (x)=-\sin (x)$	$\int \sin (x) d x=-\cos (x)+C$
$\frac{d}{d x} \tan (x)=\sec ^{2}(x)$	$\int \sec ^{2}(x) d x=\tan (x)+C$
$\frac{d}{d x} \cot (x)=-\csc ^{2}(x)$	$\int \csc ^{2}(x) d x=\cot (x)+C$
$\frac{d}{d x} x^{n}=n x^{n-1}$	$\int n x^{n-1} d x=x^{n}+C$
$\frac{d}{d x} \frac{x^{n+1}}{n+1}=x^{n}$	$\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$
$\frac{d}{d x} \ln (x)=\frac{1}{x}$	$\int x^{-1} d x=\ln (x)+C$

Search Strategy:

Let's say we wanted to find the integral of a function that has never been integrated in closed-form, like $\sin (x) / x$. We might start by differentiating functions that give results that look like $\sin (x) / x$:

$$
\int \frac{\sin (x)}{x} d x=?(x)+C \rightarrow \frac{d}{d x} ?(x)=\frac{\sin (x)}{x}
$$

```
diff(-\operatorname{Cos (x),x);}
sin(x)
diff(log(x),x);
\frac{1}{x}
diff(-\operatorname{cos (log(x)),x);}
sin(log(x))


Lecture23-Nautilus.gx

\section*{List Comprehensions:}

A list comprehension is just an expression that creates a list: Here are some examples:
```

create list(2*i,i,1,10);
[2,4,6,8,10,12,14,16,18,20]
h[i]:=x^i;
hiz:= x
create_list(h[i],i,[1,2,10]);
create_list(h[i],i, 1,10);
create_list(h[i],i,create_list(fib(j),j,1,10));
[x, x 2, x' }\mp@subsup{}{}{10
[x, \mp@subsup{x}{}{2},\mp@subsup{x}{}{3},\mp@subsup{x}{}{4},\mp@subsup{x}{}{5},\mp@subsup{x}{}{6},\mp@subsup{x}{}{7},\mp@subsup{x}{}{8},\mp@subsup{x}{}{9},\mp@subsup{x}{}{10}]
[x, x, \mp@subsup{x}{}{2},\mp@subsup{x}{}{3},\mp@subsup{x}{}{5},\mp@subsup{x}{}{8},\mp@subsup{x}{}{13},\mp@subsup{x}{}{21},\mp@subsup{x}{}{34},\mp@subsup{x}{}{55}]
create_list(integrate(sin(x)/h[i],x),i,1,5);
[\int\frac{sin(x)}{x}dx,\int\frac{\operatorname{sin}(x)}{\mp@subsup{x}{}{2}}dx,\int\frac{\operatorname{sin}(x)}{\mp@subsup{x}{}{3}}dx,\int\frac{sin(x)}{\mp@subsup{x}{}{4}}dx,\int\frac{\operatorname{sin}(x)}{\mp@subsup{x}{}{5}}dx]

```

\section*{Matrices of Functions:}

We can also generate a matrix of functions, integrals and limits.

Exercises:
1) Differentiate [H] with respect to \(x\).
2) Take the limit of \([H]\) as \(x \rightarrow a\).
3) Create a matrix of functions [G] by replacing \(\sin (x)\) in \(h[i, j]\) with \(\cos (x)\).
4) Create a \(5 \times 5\) version of the \([\mathrm{H}]\) and [G].

\section*{Numerical Integration:}

For cases where a closed-form solution does not exist, a numerical approach, based on the Riemann Sum is useful:
\(F(x)=\int_{a}^{b} \cos (x) d x \cong \sum_{i=1}^{n} \cos \left(x_{i}^{*}\right) \cdot h\)
where
\[
h=\frac{(b-a)}{n}
\]
and
\[
x_{i+1}=x_{i}+h
\]
and
\[
x_{i}^{*}=\frac{x_{i-1}+x_{i}}{2}
\]


Numerical integration is also called "quadrature". Can you speculate why?

\section*{Numerical Solutions:}

Numerical solutions require a finite number of terms for the computation to halt. If the computation doesn't halt, the problem is undecideable and no solution is possible using that approach.

Showing that a numerical approximation converges to an exact solution is vital for correctness. This issue is explored further in numerical analysis, and uses limit techniques learned here.
\[
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\sin \left(x_{i}^{*}\right)}{x_{i}^{*}} \cdot h
\]


\section*{Net Change Theorem}

From the Fundamental Thereom of Calculus we observe, the integral of the derivative of \(f(t)\) in an interval \(\left[t_{1} . . t_{2}\right]\) is the net change of \(f(t)\) in that interval:
\[
\int_{t_{1}}^{t_{2}} f^{\prime}(t) d t=\int_{t_{1}}^{t_{2}} \frac{d f(t)}{d t} d t=\int_{t_{1}}^{t_{2}} d f(t)=f\left(t_{2}\right)-f\left(t_{1}\right)
\]


\section*{Net Change Car Crash}

Consider a car whose velocity v(t) over time is given by the curve:
\[
\begin{aligned}
v(t)=\frac{d s(t)}{d t} & =\frac{60[\mathrm{mph}]}{6.4[\mathrm{~s}]} \cdot t[\mathrm{~s}] \\
& =\frac{88[\mathrm{fps}]}{6.4[\mathrm{~s}]} \cdot t[\mathrm{~s}]=13.75 \cdot t
\end{aligned}
\]

How far does it travel as it accelerates from 0 to 60 mph ?
\[
\left.\begin{array}{rl}
\int_{0}^{6.4} v(t) d t= & 13.75 \int_{0}^{6.4} t d t
\end{array}\right)=\left\{\begin{array}{l}
\left.\frac{13.75}{2} \cdot t^{2}\right|_{0} ^{6.4}
\end{array}\right.
\]

Exercises:
1) Adjust \(t_{1}, t_{2}\) and \(m\) to discover the distance traveled.

2) Would a car travel this far while decelerating? Theorize.

\section*{Angular Velocity}

Right now you are traveling ~ 1,000 mph around the center of the earth and \(\sim 67,000 \mathrm{mph}\) around the center of the sun.


The earth rotates 365.25 times around Try not to hit anything! its own axis for every revolution around the sun.
Exercises:
1) Click the play button to animate \(\theta\), the angle of the earth around the sun.
2) Adjust \(r_{s}, r_{e}\) and \(d_{e s}\) to realistic values where 1 unit \(=1\) million miles.
3) What points on a circular earth appear to intersect themselves? How often?
4) Why would this be important for meteor impact, or for time travel?

\section*{Integration in Radial Coordinates}

When we integrate in Cartesian coordinates we drew rectangles and trapezoids. When we integrate in polar coordinates we draw triangles.
Consider the following equation of a "line" in polar coordinates:
\[
r(T)=m \cdot T+b
\]

The height of a given triangle: \(\quad r\left(T_{i}\right)\)
The base of a given triangle: \(\Delta s=r\left(T_{i}\right) \Delta T\) The area of the \(i_{\text {th }}\) triangle is:
\[
A_{i}=\frac{1}{2} b_{i} h_{i}=\frac{1}{2} \Delta s \cdot r_{i}=\frac{1}{2} r_{i} \Delta T \cdot r_{i}=\frac{1}{2} r_{i}^{2} \Delta T
\]

Taking the limit we have the area is:
\[
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{2} r\left(T_{i}\right)^{2} \cdot \Delta T=\frac{1}{2} \int_{T_{1}}^{T_{2}} r(T)^{2} d T
\]

Exercises:
1) Drag the points (m,b), T1 and \(T 2\) to form the area of a quarter circle.
2) Compute the real area.

\section*{Everything But The Kitchen Sink}

While attempting to cook, a certain professor has left the kitchen faucet on "just for a second". He checks his email for three minutes and starts a shower. There is half a gallon of water in the sink when he starts to check his email. The capacity of the sink is 4.85 gallons. Water flows into the sink at 0.6 gallons per minute while he checks his email, but slows to 0.4 gallons per minute while he showers.


Exercises:
1) Set up the symbolic integral.
2) Compute the overflow time.
3) Complete the diagram.
4) How long can the shower be?

\[
\begin{aligned}
& \boldsymbol{\nabla} \frac{d}{d x} f(x) \rrbracket \\
& f(x) \\
& \mathbb{\Vdash} \int \frac{d}{d x} f(x) d x
\end{aligned}
\]


End```

