Learning
 Calculus
 With

Geometry
Expressions"'
Lecture 20:
Integration:
Area and Distance
by L. Van Warren

Chapter 5: Integration

Lecture	Topic
19	Antiderivatives
20	Integration: Area and Distance
21	The Definite Integral
22	Fundamental Theorem of Calculus

Inspiration

AlanTuring 1912-1954
Cambridge / Princeton

- Father of Modern ComputerScience From Which Computer Algebra Derives
- Created Turing Machine
- Devised Turing Test : Computability
- Translated Gödel's Work Into Equivalent Machines

Turing Machines:

A Turing Machine (TM) consists of a TAPE and a PROGRAM executing in discrete STEPS.

The TAPE consist of sequential cells, each containing symbols from a finite alphabet. The PROGRAM is a graph of states.
-This five-state"Busy Beaver"
halts in only 47,176,870 Steps!
At each STEP, a TM may:
a) Read \& Write the current symbol.
b) Change state .
c) Move the TAPE left or right.

Proofs as "Devices Under Test":

Our responsibility in mathematics include:

1) Uncover truth by proving statements as true or false OR
2) Prove that 1) cannot be proven for a given statement'.

- Absolute proof is subject to the limitations of Gödel.
- Practical proof verifies consistency of a statement within the assumptions that are themselves proven practically.
- A Turing machine that halts constitutes a proof of a given finite state machine and a given input.

Proofs as "Devices Under Test":

The proof of a mathematical statement is analgous to the concept of "Device Under Test" in electrical circuits.

- A statement can be verified to a given certainty statistically.
- This leads to the possibility of abstracting a proof in terms of input and output relationships.
- A function that produces a certain output for a given input is verified for that input.
- If a function is verified over 95% of its input space, then we have a 95% certainty that the function performs as expected, that is, is true to our expectation.

Stalking the Wild Asparagus:

In the last lecture we examined antiderivatives shown as equivalent to indefinite integrals.

This lecture is about finding the area under a curve. We will do this by using the definite integral, we will start by reviewing some important results.

- Nine percent of respondents report that Asparagus reminds them of the integral sign.

$$
\int_{1}^{2} x d x=\left.\frac{x^{2}}{2}\right|_{1} ^{2}=\frac{2^{2}}{2}-\frac{1^{2}}{2}=2-\frac{1}{2}=\frac{3}{2}
$$

Derivatives \& Integrals: Constant Case

Lecture 20 - Integration: Area and Distance

Lecture20-IntegralOfQuadratic.gx

Derivatives \& Integrals: Quadratic Case

Derivative	Function	Integral
$2 a x+b$	$a x^{2}+b x+c$	$\frac{a}{3} x^{3}+\frac{b}{2} x^{2}+c x+c$

Exercises:

1) Drag a, b, c, and C.
2) Record how the other curves behave.
3) Explain the behavior in each case.

Derivatives \& Integrals: Inverse Case

Derivative	Function	Integral
$\frac{d}{d x}\left(\frac{1}{m x}\right)=\frac{-1}{m x^{2}}$	$\frac{1}{m x}$	$\int \frac{1}{m x} d x=\frac{1}{m} \log (x)+C$

Exercises:

1) Open the example, drag m and C.
2) Record how the other curves behave ${ }_{C}$
3) Explain the behavior in each case.

Derivatives \& Integrals: Other Cases

Derivative	Function	Integral
$n a x^{n-1}$	$a x^{n}$	$\frac{a}{n+1} x^{n+1}+C$
$A \cos (x)$	$A \sin (x)$	$-A \cos (x)+C$
$A \omega \cos (\omega t+\phi)$	$A \sin (\omega t+\phi)$	$-\frac{A}{\omega} \cos (\omega t+\phi)+C$
e^{x}	e^{x}	e^{x}
$\frac{1}{x}$	$\ln (x)$	$x \ln (x)-x$

Exercise: Create a Geometry Expressions ${ }^{\text {TM }}$ example for each case above.

Area and Perimeter of Common Figures

Area and Perimeter of Common Figures

Area and Perimeter of Common Figures

Drawing Boxes

Lecture20-AreaUnderCurve1.gx
Lecture20-AreaUnderCurve2.gx

Letting $\mathrm{a}=0$ and $\mathrm{b}=\pi$ we can draw simple boxes that overestimate and underestimate the area under the curve.

Averaging the results in this case gives 2π, the exact result!
Area Under Curve: Exact Solution
For the general case we integrate the function between the limits a and b to obtain the area under the curve.

$$
\begin{aligned}
& \int_{x=0}^{x=\pi} \cos 3 x+2 d x=\int_{x=0}^{x=\pi} \cos 3 x d x+2 \int_{x=0}^{x=\pi} d x= \\
& \frac{1}{3}\left[\left.\sin 3 x\right|_{x=0} ^{x=\pi}+2 x_{x=0}^{x=\pi}=\frac{1}{3}[\sin 3 \pi-\sin 3 \cdot 0]+2 \pi-0=2 \pi\right.
\end{aligned}
$$

Computing Area in Maxima ${ }^{\text {™ }}$

1) Integrate the function to find the general result.
2) Integrate the function between $\mathrm{x}=0$ and $\mathrm{x}=\pi$ to obtain the area under the curve.
3) Evaluate the result numerically to obtain a decimal number. Is this 2π ?

Notes:

- In Step 1, Maxima did not furnish a constant of integration!
- In Step 2, No constant of integration was needed... why?

Successive Approximations

Overestimates by 25%

$$
\text { Area }=7.85
$$

When we average the error is halved!

The error depends on the function and the positions of a and b.

Lecture20-AreaUnderCurve4a-c.gx

Underestimates by 25\%

$$
\text { Area }=4.71
$$

"Convergence" says
how fast we approach the exact answer as we increase the number of boxes.

We can increase the number of boxes. Averaging overestimate and underestimate is equivalent to using trapezoids!

Trapezoidal Approximation: $\mathrm{n}=10$

Units of Area

Area by Left Riemann Sum

From the left we can estimate area using the Riemann Sum. The width of each strip:

$$
\Delta x=\frac{(b-a)}{n}
$$

is multiplied by the height of each strip:

$$
f\left(x_{i}\right)
$$

and combined to compute:

$$
\text { Area }=\sum_{i=0}^{n-1} f\left(x_{i}\right) \cdot \Delta x
$$

Exercises:

1) Drag a and b , then reset them to 2 and 7 respectively.
2) What is the value of i when $x_{i}=\mathrm{a}$, when $x_{i}=\mathrm{b}$?
3) Extend the example from $n=5$ to $n=6$.

Area by Right Riemann Sum

From the right we can also estimate area using the Riemann Sum. The strip width remains:

$$
\Delta x=\frac{(b-a)}{n}
$$

as does the strip height:

$$
f\left(x_{i}\right)
$$

The products are summed to give:

$$
\text { Area }=\sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x
$$

Exercises:

1) How is the index i different in the Left and right Riemann Sums?
2) Write out each term of the summation for the $n=5$ case.
3) Extend the example from $n=5$ to $n=6$.

Area by Mean Riemann Sum

We can combine the left and right Riemann sums to provide an estimate that converges more quickly to the value of the area under the curve:

$$
\begin{aligned}
& f\left(\overline{x_{i}}\right)=\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2} \\
& \text { Area }=\sum_{i=0}^{n-1} f\left(\overline{x_{i}}\right) \cdot \Delta x
\end{aligned}
$$

Exercises:

1) Drag a and b.
2) Write out each term of the summation for the $n=5$ case.
3) Extend the example from $n=5$ to $n=6$.

Limit of Riemann Sum

What happens to width of the each strip as we take the limit as $n \rightarrow \infty$ of:

$$
\Delta x=\frac{(b-a)}{n} \quad ?
$$

It can be shown that:

$$
\operatorname{limit}_{n \rightarrow \infty} \sum_{i=0}^{n-1} f\left(x_{i}\right) \cdot\left(\frac{b-a}{n}\right)=\int_{a}^{b} f(x) \cdot d x
$$

Exercises:

1) Drag a and b.
2) Change the function from \sqrt{x} to x^{2} and find the area under the curve between $\mathrm{a}=2$ and $\mathrm{b}=7$.

Integrating Constant Velocity

2) Drag v vertically to discover a new distance traveled in 100 seconds.
3) Change the time interval boundaries a and b change the duration.

Integrating Linear Velocity

Exercises:

1) Drag v vertically to discover a new distance traveled between 20 and 100 seconds.
2) Change the time interval boundaries a and b change the duration.

Integrating Arc Length

Just as we added strips of area together to find area, we can add segments of a curve to obtain the length of the curve.

The more segments we use, the better the approximation.

Integrating Arc Length

To derive a formula for integrating arc length we start with an infinitesimal arc length ds, computed via the Pythagorean theorem:

$$
d s^{2}=d x^{2}+d y^{2}
$$

$$
\begin{array}{ll}
\frac{d s^{2}}{d x^{2}}=\frac{d x^{2}}{d x^{2}}+\frac{d y^{2}}{d x^{2}} & \rightarrow\left(\frac{d s}{d x}\right)^{2}=1+\left(\frac{d y}{d x}\right)^{2} \\
\frac{d s}{d x}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} & \rightarrow \quad d s=\left(\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}\right) d x \\
s=\int_{a}^{b} d s & \left.\rightarrow s=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}\right) d x
\end{array}
$$

Integrating Arc Length

With all this machinery, it is a good idea to test against a known case. A circle is a good choice for our first arc length integral.

Few functions can be integrated in closed form, so numerical methods are often used.

Numerical Convergence

When we perform numerical integration, the number of pieces we add together makes a difference on the accuracy and precision of the solution.

Exercises:
Look up the definitions of:

- floating point overflow
- floating point underflow
- round-off error
- truncation-error
- numerical instability

End

