Learning Calculus With Geometry Expressions[™]

by L. Van Warren

Chapter 5: Integration

Lecture	Τορις
19	ANTIDERIVATIVES
20	INTEGRATION: AREA AND DISTANCE
21	The Definite Integral
22	Fundamental Theorem of Calculus

Inspiration

Alan Turing 1912 - 1954 Cambridge / Princeton

- Father of Modern Computer Science From Which Computer Algebra Derives
- Created Turing Machine
- Devised Turing Test : Computability
- Translated Gödel's Work Into Equivalent Machines

A Turing Machine (TM) consists of a TAPE and a PROGRAM executing in discrete STEPS.

The TAPE consist of sequential cells, each containing symbols from a finite alphabet. The PROGRAM is a graph of states.

At each STEP, a TM may:

a) Read & Write the current symbol.b) Change state .

c) Move the TAPE left or right.

Proofs as "Devices Under Test":

Our responsibility in mathematics include:

- 1) Uncover truth by proving statements as true or false OR
- 2) Prove that 1) cannot be proven for a given statement`.
- Absolute proof is subject to the limitations of Gödel.
- Practical proof verifies consistency of a statement within the assumptions that are themselves proven practically.
- A Turing machine that halts constitutes a proof of a given finite state machine and a given input.

Proofs as "Devices Under Test":

The proof of a mathematical statement is analgous to the concept of "Device Under Test" in electrical circuits.

- A statement can be verified to a given certainty statistically.
- This leads to the possibility of abstracting a proof in terms of input and output relationships.
- A function that produces a certain output for a given input is verified for that input.
- If a function is verified over 95% of its input space, then we have a 95% certainty that the function performs as expected, that is, is true to our expectation.

Stalking the Wild Asparagus:

- Nine percent of respondents report that Asparagus reminds them of the integral sign. In the last lecture we examined antiderivatives – shown as equivalent to indefinite integrals.

This lecture is about finding the area under a curve. We will do this by using the definite integral, we will start by reviewing some important results.

$$\int_{1}^{2} x \, dx = \frac{x^{2}}{2} \Big|_{1}^{2} = \frac{2^{2}}{2} - \frac{1^{2}}{2} = 2 - \frac{1}{2} = \frac{3}{2}$$

2

Lecture 20 – Integration: Area and Distance

Derivatives & Integrals: Other Cases

Derivative	Function	Integral
nax ⁿ⁻¹	ax ⁿ	$\frac{a}{n+1}x^{n+1}+C$
Acos(x)	Asin(x)	-Acos(x)+C
$A\omega cos(\omega t + \phi)$	Asin(ω t + ϕ)	$-\frac{A}{\omega}\cos(\omega t + \phi) + C$
e ^x	e ^x	e ^x
$\frac{1}{x}$	ln(x)	x ln(x) - x

Exercise: Create a Geometry Expressions[™] example for each case above.

16

Letting a = 0 and $b = \pi$ we can draw simple boxes that overestimate and underestimate the area under the curve.

Averaging the results in this case gives 2 π , the exact result!

and underestimate is equivalent to using trapezoids!

Exercises:

- 1) Drag a and b, then reset them to 2 and 7 respectively.
- 2) What is the value of *i* when $x_i = a$, when $x_i = b$?
- 3) Extend the example from n=5 to n=6.

Area by Mean Riemann Sum

Lecture20-AreaUnderCurve9.gx

We can combine the left and right Riemann sums to provide an estimate that converges more quickly to the value of the area under the curve:

$$f(\overline{x_i}) = \frac{f(x_i) + f(x_{i+1})}{2}$$

$$Area = \sum_{i=0}^{n-1} f(\overline{x_i}) \cdot \Delta x$$

Exercises:

- 1) Drag a and b.
- 2) Write out each term of the summation for the n=5 case.
- 3) Extend the example from n=5 to n=6.

Integrating Arc Length

Lecture20-ArcLengthDiagram.gx

To derive a formula for integrating arc length we start with an infinitesimal arc length ds, computed via the Pythagorean theorem:

Integrating Arc Length

Lecture20-ArcLengthCircle.wxm Lecture20-ArcLengthCircle.gx

With all this machinery, it is a good idea to test against a known case. A circle is a good choice for our first arc length integral.

Few functions can be integrated in closed form, so numerical methods are often used.

Numerical Convergence

When we perform numerical integration, the number of pieces we add together makes a difference on the accuracy and

precision of the solution.

Exercises:

Look up the definitions of:

- floating point overflow
- floating point underflow
- round-off error
- truncation-error
- numerical instability

