
Lecture 20:
Integration:
Area and Distance



Lecture 20 – Integration: Area and Distance 
2 

LECTURE TOPIC

19 ANTIDERIVATIVES

20 INTEGRATION: AREA AND DISTANCE

21 THE DEFINITE INTEGRAL

22 FUNDAMENTAL THEOREM OF CALCULUS

Chapter 5: Integration



 
3 

Inspiration

1912 - 1954 



Lecture 20 – Integration: Area and Distance 
4 

Turing Machines:

-This five-state“Busy Beaver” 
halts in only 47,176,870 Steps!

A Turing Machine (TM)  
consists of a TAPE and a 
PROGRAM executing in 
discrete STEPS.

The TAPE consist of sequential 
cells, each containing symbols 
from a finite alphabet. The 
PROGRAM is a graph of states.

At each STEP, a TM may:
a) Read & Write the current symbol.
b) Change state .
c) Move the TAPE left or right.
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Proofs as “Devices Under Test”:

Our responsibility in mathematics include:

1) Uncover truth by proving statements as true or false OR
2) Prove that 1) cannot be proven for a given statement`.

• Absolute proof is subject to the limitations of Gödel.
• Practical proof verifies consistency of a statement within 

the assumptions that are themselves proven practically.
• A Turing machine that halts constitutes a proof of a given 

finite state machine and a given input.



Lecture 20 – Integration: Area and Distance 
6 

Proofs as “Devices Under Test”:

The proof of a mathematical statement is analgous to the
concept of “Device Under Test” in electrical circuits.

• A statement can be verified to a given certainty statistically.
• This leads to the possibility of abstracting a proof in terms 

of input and output relationships. 
• A function that produces a certain output for a given input 

is verified for that input.
• If a function is verified over 95% of its input space, then we 

have a 95% certainty that the function performs as 
expected, that is, is true to our expectation.
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Stalking the Wild Asparagus:

In the last lecture we 
examined antiderivatives –
shown as equivalent to 
indefinite integrals.

This lecture is about finding 
the area under a curve. We 
will do this by using the 
definite integral, we will start 
by reviewing some important 
results.

- Nine percent of respondents 
report that Asparagus reminds 
them of the integral sign.
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Derivatives & Integrals: Constant Case

Derivative Function Integral

d

dx
b 0 b dx x Cb b

Lecture20-IntegralOfConstant.gx 

Exercises:

1) Open the example, drag b and C.

2) Record how the other curves behave.
3) Explain the behavior in each case.
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Derivatives & Integrals: Linear Case

Derivative Function Integral

(mx
d

m
dx

b) mx b 2m
dx(mx b C) x bx

2

Lecture20-IntegralOfLinear.gx 

Exercises:

1) Open the example, drag b, m and C.
2) Record how the other curves behave.
3) Explain the behavior in each case.
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Derivatives & Integrals: Quadratic Case

Derivative Function Integral

2ax b 2ax bx c
3 2a b

x x cx C
3 2

Lecture20-IntegralOfQuadratic.gx 

Exercises:

1) Drag a, b, c, and C.
2) Record how the other curves behave.
3) Explain the behavior in each case.
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Derivatives & Integrals: Inverse Case

Derivative Function Integral

2

1

mx

d 1

dx mx

1

mx

1
dx log( x) C

m

1

mx

Lecture20-IntegralOfInverse.gx 

Exercises:
1) Open the example, drag m and C.
2) Record how the other curves behave.
3) Explain the behavior in each case.



Lecture 20 – Integration: Area and Distance 
12 

Derivatives & Integrals: Other Cases

Derivative Function Integral

n 1nax nax
n 1a

x C
n 1

Acos( x) Asin( x) Acos( x) C

A cos( t )   Asin( t ) 
A

cos( t ) C 


xe xe xe

1

x
ln( x) x ln( x) x

Exercise: Create a Geometry Expressions™ example for each case above.
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Area and Perimeter of Common Figures

Figure Perimeter Area

Square

2a

Lecture20-AreaOfRectangle.gx 

Lecture20-AreaOfSquare.gx 

4a

Rectangle

ab2a 2b
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Area and Perimeter of Common Figures

Figure Perimeter Area

Parallelogram

bh

Lecture20-AreaOfTriangle.gx 

Lecture20-AreaOfParallelogram.gx 

2a 2b

Triangle

1
bh

2
a b c
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Area and Perimeter of Common Figures

Figure Perimeter Area

Right Trapezoid

0 1(y y )
h

2

0

1

2 2
1 0

y h

y r

r

h (y y )
Lecture20-AreaOfTrapezoid.gx 
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Area Under a Curve

x b

x a

dxcos 3x 2

We desire to find the 
area under the curve:

This is written:

We will attempt this by a 
series of approximations.

y cos(3x) 2

Lecture20-AreaUnderCurve.gx 
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Drawing Boxes

Letting a = 0 and b =  we can draw simple boxes that 
overestimate and underestimate the area under the curve.

Averaging the results in this case gives 2 , the exact result! 

Lecture20-AreaUnderCurve1.gx
Lecture20-AreaUnderCurve2.gx

Overestimates 2 by 50%

Area of box= 3 Area of box = 
Underestimates 2 by 50%
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Area Under Curve: Exact Solution

x x x

x 0 x 0 x 0

x x

x 0x 0

dx dx dx

1 1
sin 3

cos 3x 2 cos 3x 2

2x x sin 3 sin 3 0 0
3

2 2
3

  

 
  

For the general case we 
integrate the function 
between the limits a and b to 
obtain the area under the 
curve.

Lecture20-AreaUnderCurve.gx 
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Computing Area in Maxima™

1) Integrate the function to find 
the general result.

2) Integrate the function 
between x  = 0 and x =  to 
obtain the area under the 
curve.

3) Evaluate the result 
numerically to obtain a 
decimal  number. Is this 2?

Lecture20-AreaUnderCurve.wxm

Notes:
• In Step 1, Maxima did not furnish a constant of integration!
• In Step 2, No constant of integration was needed… why?
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Successive Approximations

We can increase the number of boxes. Averaging overestimate 
and underestimate is equivalent to using trapezoids!

Lecture20-AreaUnderCurve4a-c.gx

When we average
the error is halved!

The error depends on 
the function and the 
positions of a and b.

Area = 7.85
Underestimates by 25%

Area   = 4.71

Area = 6.29

Average  is Trapezoid
Estimates within 1%

“Convergence” says 
how fast we approach 
the exact answer as 
we increase the 
number of boxes.

Overestimates by 25%
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cos(3x)+2

x=bx=a

Þ ~6.28

As we increase the 
number of trapezoids,

some overestimate  and 
others underestimate the 

area in their intervals. The 
resulting errors cancel 

improving accuracy.

Trapezoidal Approximation: n=10 Lecture20-AreaUnderCurve5.gx

Exercises:

1) Drag lines x=a and x=b.
2) Modify example to

use one less trapezoid.
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So far, units of measure have been absent or dimensionless.
When required, units are simply the product

of the x-axis units y-axis units.
Examples:                                          are

For energy:                                          .

For carpet: .

For distance traveled: .

Units of Area Lecture20-AreaUnderCurve6.gx

feet
sec e

sec
fe t

Watts hour Wat ss t hour

2square yards or m

Exercise:
1) Open the example. Drag a an b.
2) Lock a at 0.0 and b at 3.1416
3) Deduce the units rule for derivatives.
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Area by Left Riemann Sum Lecture20-AreaUnderCurve7.gx

(b a)
x

n


Exercises:
1) Drag a and b , then reset them to 2 and 7 respectively.
2) What is the value of i when xi = a, when xi = b?
3) Extend the example from n=5 to n=6.

n 1

i

i

0

f ( x )Ar a xe 

From the left we can estimate area using the 
Riemann Sum. The width of each strip:

is multiplied by the height
of each strip:

and combined to compute:
if ( x )

1 2 3 4x x x x

0f ( x )

4f ( x )
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Area by Right Riemann Sum
Lecture20-AreaUnderCurve8.gx

(b a)
x

n


Exercises:
1) How is the index i different in the Left and right Riemann Sums?
2) Write out each term of the summation for the n=5 case.
3) Extend the example from n=5 to n=6.

i

n

i 1

f ( x )Ar a xe 

if ( x )

1 2 3 4x x x x

1f ( x )

5f ( x )From the right we can also estimate area using 
the Riemann Sum. The strip width remains:

as does the strip height:

The products are summed to give:
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Area by Mean Riemann Sum Lecture20-AreaUnderCurve9.gx

Exercises:
1) Drag a and b.
2) Write out each term of the summation for the n=5 case.
3) Extend the example from n=5 to n=6.

1 2 3 4x x x x

We can combine the left and 
right Riemann sums to provide 
an estimate that converges 
more quickly to the value of the 
area under the curve:

i

n 1

i 0

f ( x )Are xa 

i i 1
i

f ( x ) f ( x )
f ( x )

2
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Exercises:
1) Drag a and b.
2) Change the function from        to        and find the area under the curve 

between a = 2 and b = 7.

2x x

Limit of Riemann Sum Lecture20-AreaUnderCurve10.gx

(b a)
x

n


n 1

ai

i
n

b

0

b a
l f ( x )

n
im f ( xit ) dx

What happens to width of the each strip
as we take the limit as n   of:

?

It can be shown that:
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Exercises:
1) What is n?
2) Drag v vertically to discover a new distance traveled in 100 seconds.
3) Change the time interval boundaries a and b change the duration.

Integrating Constant Velocity Lecture20-IntegratingVelocity.gx

(b a)
t

n


i
n 1

0

i 1

i

f (t ) f (
A

t
rea

)
t

2


Integrating
constant velocity

with respect to time
gives distance.

An object traveling 
50 feet per second

for 100 seconds
will travel 5000 feet.

time (s)

fps
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Exercises:
1) Drag v vertically to discover a new distance traveled between 20 and 100 seconds.
2) Change the time interval boundaries a and b change the duration.

Integrating Linear Velocity Lecture20-IntegratingLinearVelocity.gx

(b a)
t

n


i
n 1

0

i 1

i

f (t ) f (
A

t
rea

)
t

2


Integrating
linear velocity

with respect to time
also gives distance.

Computation of the 
integral is identical.

The function is 
sampled at n=10 
discrete times ti.

time (s)

fps
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Þ ~3.35

Þ ~2.05

Þ ~2.11

Þ ~3.4

Integrating Arc Length Lecture20-IntegratingArcLength.gx

Just as we added strips of area together to find 
area, we can add segments of a curve to obtain 
the length of the curve.

The more segments we use, the better the 
approximation.
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Integrating Arc Length Lecture20-ArcLengthDiagram.gx

To derive a formula for integrating arc length we start with an 
infinitesimal arc length ds, computed via the Pythagorean 
theorem: 2 22 dxd ys d

2 22 2

2 2 2

2 2

2b

a a

2

b

dx dy dy
1

dx dxdx dx dx

dy dy
1 1 dx

dx dx dx

dy
s ds s 1 dx

dx

ds ds

ds
ds

2 3 4 5 6 7 8 9 10 11 12 13 14 15 162 3 4 5 6 7 8 9 10 11 12 13 14 15 16

dy

dx

ds
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Integrating Arc Length
Lecture20-ArcLengthCircle.wxm
Lecture20-ArcLengthCircle.gx

With all this machinery, it is a good idea to test against a known 
case. A circle is a good choice for our first arc length integral.

r

0

s

b

s

Few functions can be integrated in closed form, so numerical 
methods are often used.
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Numerical Convergence

When we perform numerical integration, the number of pieces 
we add together makes a difference on the accuracy  and 
precision of the solution. 

Exercises:
Look up the definitions of:

• floating point overflow
• floating point underflow
• round-off error
• truncation-error
• numerical instability
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End


