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|Inspiration

AlanTuring 1912 - 1954
Cambridge / Princeton

* Father of Modern Computer Science
From Which Computer Algebra Derives

* Created Turing Machine

* Devised Turing Test : Computability

* Translated Godel's Work
Into Equivalent Machines




Turing Machines:

A Turing Machine (TM)

consists of a TAPE and a
PROGRAM executing in
discrete STEPS.

0,1,L means
read O
write 1
shift Left

The TAPE consist of sequential
cells, each containing symbols
from a finite alphabet. The

PROGRAM is a graph of states.

Ll P Pl Pl Pl Tl Ll | At each STEP, a TM may:

a) Read & Write the current symbol.
b) Change state .
c) Move the TAPE left or right.

-This five-state“Busy Beaver”
halts in only 47,176,870 Steps!




Proofs as “Devices Under Test”:
S A 2

Our responsibility in mathematics include: \‘/

”%9

1) Uncover truth by proving statements as true or false O
2) Prove that 1) cannot be proven for a given statement’.

* Absolute proof is subject to the limitations of Godel.

* Practical proof verifies consistency of a statement within
the assumptions that are themselves proven practically.

A Turing machine that halts constitutes a proof of a given
finite state machine and a given input.




Proofs as “Devices Under Test”:

&

The proof of a mathematical statement is analgous to the
concept of “Device Under Test” in electrical circuits.

 Astatement can be verified to a given certainty statistically.

* This leads to the possibility of abstracting a proof in terms
of input and output relationships.

A function that produces a certain output for a given input
is verified for that input.

* |fafunction is verified over 95% of its input space, then we
have a 95% certainty that the function performs as
expected, that is, is true to our expectation.




Stalking the Wild Asparagus:

- Nine percent of respondents
report that Asparagus reminds
them of the integral sign.

In the last lecture we
examined antiderivatives —
shown as equivalent to
indefinite integrals.

This lecture is about finding
the area under a curve. We
will do this by using the
definite integral, we will start
by reviewing some important
results.




Lecture20-IntegralOfConstant.gx

Derivatives & Integrals: Constant Case

Derivative Function Integral
=0 b fbdx:bx+C -
dx

Exercises:

1)  Open the example, drag b and C.
2)  Record how the other curves behave.
3)  Explain the behavior in each case.




Lecture20-IntegralOfLinear.gx

Derivatives & Integrals: Linear Case /
Derivative Function Integral
d m
d—(mx+b):m mx-+b f(mx+b)dx:3x +bx+C
X

Exercises: X2 m
1)  Open the example, drag b, m and C.

2)  Record how the other curves behave.
3)  Explain the behavior in each case.




Lecture20-IntegralOfQuadratic.gx

Derivatives & Integrals: Quadratic Case /
Derivative Function Integral
2 a s b 2
2ax+b ax® +bx—+c EX +EX +cx+C

Exercises:

1) Draga, b, c,and C.

2)  Record how the other curves behave.
3)  Explain the behavior in each case.

X-a X-b
Y=C+ + +X-C
3 2

Y=X2-a+X-b+c

Y=2-X-a+b




Lecture20-IntegralOfinverse.gx

Derivatives & Integrals: Inverse Case

Derivative Function Integral
di{ 1 —1 1 1 1
—[—]: 5 — —dx=—Ilog(x)+C
dx\mx) mx mx mx m

Exercises:
1)  Open the example, drag m and C.
2)  Record how the other curves behave

C
3)  Explain the behavior in each case. ®




Derivatives & Integrals: Other Cases

Derivative Function Integral
n—1 n _X”+1 +C
nax ax n+1
Acos(x) Asin(x) —Acos(x)+C
. A
Awcos(wt + ¢) Asin(wt + @) ——cos(wt +¢)+C
1)
e’ e” e’
1
- In(x) xIn(x)—x
X

Exercise: Create a Geometry Expressions™ example for each case above.




Area and Perimeter of Common Figures

Lecture20-AreaOfRectangle.gx Perimeter

Figure Perimeter Area
Square
Area Area(Perimeter)
a @
d
®
a Perimefer
Lecture20-AreaOfSquare.gx
Rectangle .;Area Area(Perimeter)
b
' 2a+2b ab
d
i /




Area and Perimeter of Common Figures

Figure Perimeter Area
Parallelogram _
" Area Area(Perimeter)
L bl :
Y A (2a+2:b,b-h) 2a+2b | bh
< | | °
L;’ctureZO-AreaOfParaI:Ielogram.gx | Igerimetéﬁr
Triangle
| Area Area(Perimeter)
) o . 1
3 A\ C a+b+c | —bh
w 2
»
Perimeter
b ‘
J;._ectu re20;AreaOfT ri.;ngle.gx |




Area and Perimeter of Common Figures

Figure Perimeter Area
Right Trapezoid
r ;—Area Area(Perimeter) h
y1 .2;\. ® yO —|_ —|_ h(yo +y1)
Yo v Vi +r 2
h
—o
Peri rﬁ@eter r=
NN
Lecture20-AreaOfTrapezoid.gx




Lecture20-AreaUnderCurve.gx

Area Under a Curve I4

We desire to find the
area under the curve:

y =cos(3x)+2

This is written:
X=b
f cos 3x +2 dx

We will attempt this by a
series of approximations.

-3 -2 -1

Lecture 20 - Integration: Area and Distance




Drawing Boxes

Area of box= 37
Overestimates 2m by 50%

]

Lecture20-AreaUnderCurvel.gx
Lecture20-AreaUnderCurve2.gx

cos(3x)+2

Letting a = 0 and b = T we can draw simple boxes that
overestimate and underestimate the area under the curve.

Averaging the results in this case gives 2 &, the exact result!




Lecture20-AreaUnderCurve.gx

Area Under Curve: Exact Solution

cos(3x)+2

For the general case we
integrate the function
between the limits aand b to
obtain the area under the
curve.

3 2 -1

X=T1 X=TT X=TT
f cos 3x +2 dx:f cos 3x dx +2f ax =
x=0 x=0 x=0
2% = Ysin 3z —sin3.0]427-0 =2 \
X:0+ XXZO = E[sm 7T —SIinh 3 ]—lr T — = 27

Lecture 20 - Integration: Area and Distance




Computing Area in Maxima™

integrate (cos (3*x)+2, x); 1)
111l 3
SlI'l( X)+2X (
3
integrate(cos(3*x)+2, =, 0,%pl): 2)
2 %pl <
float (%) ;
b.28318530717958¢6 < 3)

Lecture20-AreaUnderCurve.wxm

Integrate the function to find
the general result.

Integrate the function
between x =0 and x=mto
obtain the area under the
curve.

Evaluate the result
numerically to obtain a
decimal number. Is this 27t?

Notes:

* In Step 1, Maxima did not furnish a constant of integration!
* In Step 2, No constant of integration was needed... why?

v i

v




S Uuccess ive A 0] o) roxi mat | ons Lecture20-AreaUnderCurve4a-c.gx

» [ ?
Y ses@ERRT * ) cosEx)*2 !
1 ) l :
f ] | 1
f ] | 1
i ! + ¢
L e —4 : :
—> Average is Trapezoid €—— : i
]
Estimates within 1% ! | |
®-= 471 Area =6.29
: @ 14 ®- -3 ®--157
: ) i =
o- - L * . »
a (b+a)/2 b N \cios(Sx)+2 ) - (bra)f2 °
~ |
~. )
Overestimates by 25% | S i Underestimates by 25%
N i
Area = 7.85 ! Area =4.71
I \\\ |
| ~
When we average | 1 T “Convergence” says
the erroris halved! @ 392 i ®- 235 how fast we approach
4 i ' the exact answer as
tT:eferrotlf deper;dtshon g (b+a)2 b we increase the
e function and the

number of boxes.
positions of a and b.

We can increase the number of boxes. Averaging overestimate
and underestimate is equivalent to using trapezoids!




Lecture20-AreaUnderCurve5.gx

Trapezoidal Approximation: n=10

As we increase the
number of trapezoids,
some overestimate and
others underestimate the
area in their intervals. The
resulting errors cancel
improving accuracy.

Cc0oS(3x)+2

Exercises:
1) Drag lines x=a and x=b.
2) Modify example to

use one less trapezoid.

b




Lecture20-AreaUnderCurve6.gx

Units of Area

So far, units of measure have been absent or dimensionless.

When required, units are simply the product
of the x-axis units X y-axis units.

Examples:
For energy: Watts xhours =Watt -hours .

For carpet: square yards or m*,

\\"\
I~
N ® ->-658 feet
I~y Y For distance traveled: ——sec = feet .
(S : sec
| Do 1
I ) S 3
e SN
I ~$ +.._\ —_—
.____i__‘ : b - Exercise:
! ““*l L Bl SR 1) Openthe example. Drag a an b.
L ““‘i"- 2) Lockaat0.0and b at 3.1416
1 B -__,’_‘____ L __ 3) Deduce the units rule for derivatives.

a time (hours)




Area by Left Riemann Sum

Lecture20-AreaUnderCurve7.gx

From the left we can estimate area using the
Riemann Sum. The width of each strip:

_(b—a)

B n

is multiplied by the height
of each strip:

Ax

f(x;)
and combined to compute:

n—1
Area:Zf(xi)-Ax
i=0

Exercises:

f(x,)
b
|
.Ir _____
flx,) fomend
i N
|
|
|
|
® = 1966
|
|
|
|
O--—-—-o——b----¢p——-—----9
a X1 X3 X3 X4 b

1) Dragaandb, then reset them to 2 and 7 respectively.
2) What is the value of i when x; = a, when x; = b?

3) Extend the example from n=5 to n=6.




Area by Right Riemann Sum

Lecture20-AreaUnderCurve8.gx

From the right we can also estimate area using

the Riemann Sum. The strip width remains:

_(b—a)
B n
as does the strip height:
f(x;)
The products are summed to give:

Area:Zf(xi)-Ax

Ax

Exercises:

f(xs)

]

1) How is the index i different in the Left and right Riemann Sums?
2) Write out each term of the summation for the n=5 case.

3) Extend the example from n=5 to n=6.




Lecture20-AreaUnderCurve9.gx

Area by Mean Riemann Sum

We can combine the left and

right Riemann sums to provide |' ’

an estimate that converges -
more quickly to the value of the —— i
area under the curve: r—*—! i
I I
| |
f(;i):f(xi)+f(xi+1) i i

o7 | — 420.94

L | | i |

— . I | I I
Area_lz;f(x,.) Ax i i i

P S SIS SN S W
a X X X3 X4 b

Exercises:

1) Dragaandb.

2) Write out each term of the summation for the n=5 case.
3) Extend the example from n=5 to n=6.




Limit of Riemann Sum

What happens to width of the each strip

as we take the limit as n 2 o of:

_(b—a)

— ?
n

AX

It can be shown that:

n—1 b
limit f(x,.)-[b_a}:ff(x)-dx
S a
Exercises:
1) Dragaandb.

betweena=2and b =7.

Lecture20-AreaUnderCurvel0.gx

f(b)
fa)

If/

i @ - 203

l

|

:

R -

a b

2) Change the function from \/;to x° and find the area under the curve




Lecture20-IntegratingVelocity.gx

Integrating Constant Velocity

Integrating n1
t.)—T(t.
constant velocity €0 Area—Z[f( / Zf( 11/ - At
with respect to time =0 e (b—a)
gives distance. &0 o
vips . e
An object traveling
50 feet per second
for 100 seconds
will travel 5000 feet.
Exercises: . @ = ~5000 :

1) Whatisn?
2) Drag v vertically to discover a new distance traveled in 100 seconds.
3) Change the time interval boundaries a and b change the duration.




Integrating Linear Velocity
Integrating

linear velocity ., AreO,ZE:

with respect to time
also gives distance.

Computation of the
integral is identical.

The function is

Lecture20-IntegratingLinearVelocity.gx

20 v
sampled at n=10 /I
discrete times t;. -~

a

Exercises:

1) Drag v vertically to discover a new distance traveled between 20 and 100 seconds.

N .: 4772

2) Change the time interval boundaries a and b change the duration.

f(t,-)—f(t,-ﬂ)} L
,0[ 2 ///
e
At:(b_a) /"'
n /i
fps paEn
A -
e .
A L |
A o '
L L |




Lecture20-IntegratingArcLength.gx

Integrating Arc Length

Just as we added strips of area together to find
area, we can add segments of a curve to obtain
the length of the curve.

The more segments we use, the better the T~

approximation. / >
= ~2.11
/\ * V = ~3.4

= ~3.35

< L
/\/




Lecture20-ArcLengthDiagram.gx

Integrating Arc Length

To derive a formula for integrating arc length we start with an
infinitesimal arc length ds, computed via the Pythagorean

theorem:

ds’ =dx* +dy’
ds
2 2 2 2 2 dy
dSz — dXZ -+ dyz — [ﬁ] =1+ [Q] o
dx dx® dx dx dx dx

2 2
ﬁz 1+ ﬂ —  ds=|,[1+ ﬂ dx
ax ax ax




Lecture20-ArcLengthCircle.wxm

I nteg rati ng ArC Length Lecture20-ArcLengthCircle.gx

With all this machinery, it is a good idea to test against a known
case. A circle is a good choice for our first arc length integral.

(311) diff(sqrt(r*2-x~2), x); _

(%12) integrate(sqrt(l+%~2),x,0,b);
r positive or negative?positive;
Is b positive, negative, or zero?pos

B
(302) asin|—

b

X

[

Few functions can be integrated in closed form, so numerical
methods are often used.




Numerical Convergence

When we perform numerical integration, the number of pieces
we add together makes a difference on the accuracy and
precision of the solution. ‘ |

Exercises:
Look up the definitions of:
*  floating point overflow
*  floating point underflow
*  round-off error
. truncation-error
*  numerical instability







