

- Three Antiderivatives of $Y=x^{2}$

Chapter 5: Integration

Lecture	Topic
19	Antiderivatives
20	Integration: Area and Distance
21	The Definite Integral
22	Fundamental Theorem of Calculus

Inspiration

AlonzoChurch 1903-1995
Princeton/UCLA Mathematician

- Lambda Calculus
the calculus of anonymousfunctions.
- Church-Turing Thesis
- Proofthat First Order Logic is Undecideable.
- Influenced Functional Languages like Lisp, Python and Haskell

Anonymous Functions:

Up to now we have often used functions that have names. For example, $f(x)=x$, says that the function named f maps its input x to its output with no change. Another, named, square (x), multiplies its input by itself and outputs the result, x^{2}.

It is possible to accomplish the same process without naming the functions. Instead we write:

This notion, due to Church, can be greatly amplified and extended. For further information see the wiki.

Undo, Inverse, Unmap:

The Inverse of a function "undoes" the function:

$$
f^{-1}(f(x))=x \quad \text { AND } \quad f\left(f^{-1}(x)\right)=x
$$

A Map is a pairing or connection between values of x and $f(x)$.
The Inverse "undoes" the map.
The Inverse "unmaps" the map.

How would you represent these equations anonymously?

Uniqueness

Uniqueness Implies Invertibility

If only one output value exists for any input value we say the relation is Unique.

Unique relations have one x value for every $f(x)$ value.
Uniqueness implies Invertibility.

This means we can undo the operation and recover the original value.

Dummy Variables:

Y-Interval		Consider a function $f(X)$ that maps: an X-interval [a..b] to a Y-interval [f(a)..f(b)]
-1	${ }_{-1} \quad$X-Interval${ }^{2}$	$\begin{array}{llll}3 & 4 & 5 & 6\end{array}$

Dummy Variables:

$f(X)$ might process

 the whole real line $(-\infty,+\infty)$, Consider just a small chunk: an X-interval [a..b]
Dummy Variables:

Dummy Variables:

Domains \& Ranges, Inputs \& Outputs:

The Derivative and Antiderivative:

Having discussed inverse functions, consider the inverse of the derivative operator, that "undoes" the derivative. This inverse is called the antiderivative. Another name for the antiderivative of $f(x)$ is the integral of $f(x)$.

If:

Then:

$$
\frac{d}{d x} f(x)=g(x)
$$

$g(x)$ is the derivative of $f(x)$ and
$f(x)$ is the antiderivative of $g(x)$

And we write:

$$
\int g(x) d x=f(x)+c
$$

The antiderivative can also be called "undiff".

A Certain Antiderivative:

Exercises:

1) Open the example, drag point labeled C.
2) Differentiate each green cubic function by hand.
3) For large X, what values do the green functions have?
4) Intersect the red function with each of its three antiderivative functions, to discover three intersection points.

$$
\int x^{2} d X=\frac{x^{2}}{3}+c
$$

Differentiating in Reverse for Falling:

Previously we wrote the position of a falling object as:

$$
y=f(t)=-\frac{1}{2} g t^{2}
$$

Assuming "up" is positive, differentiating yields:

$$
\frac{d v}{d t}=f^{\prime}(t)=v=-g t
$$

Differentiating again we are left like our friend here with the acceleration due to gravity:

$$
\frac{d^{2} y}{d t^{2}}=f^{\prime \prime}(t)=a=-g
$$

The minus sign reminds us that gravity pulls.

The Antiderivative is Just the Integral:

To undo the previous derivatives, we integrate:

$$
v(t)=\int(-g) d t=-g \int d t=-g t+v_{0}
$$

Lather, rinse, repeat to obtain:

$$
y(t)=\int\left(-g t+v_{0}\right) d t=-g \frac{t^{2}}{2}+v_{0} t+y_{0}
$$

We can arrange our coordinates so that the constants of integration v_{0} and y_{0} are zero as we saw in the original case or we can work a richer set of problems.

The value of the contants are just the
 velocity v_{0}, and position y_{0}, at time zero, t_{0}.

The Falling Integral:

Exercise:

1) Open the example, drag the two constants v_{0} and y_{0}.
2) Change the gravitational acceleration g to match: the Moon ($1.6 \mathrm{~m} / \mathrm{s}$), Earth ($9.8 \mathrm{~m} / \mathrm{s}$) and Mars 3.7 (m / s). Add horizontal lines corresponding to these values of g. Note how sensitive the path of the object is to g.
3) The position of the object initially increases with time, why?
4) Where does max-min theory appear in this example?

$$
\begin{aligned}
& y(t)=\int\left(-g t+v_{0}\right) d t=-g \frac{t^{2}}{2}+v_{0} t+y_{0} \\
& v(t)=\int(-g) d t=-g \int d t=-g t+v_{0}
\end{aligned}
$$

The Falling Integral: Symbolically

Defining Functions in Maxima ${ }^{\top}{ }^{\top}$

```
Diff(f):=diff(f,x);
```



```
1) Define \(\operatorname{Diff}(\mathrm{f})\) as the derivative of a
Diff(f):= diff(f,X)
Diff(x^2);
```



```
2x
Undiff(f):=integrate (f,x);
2) Differentiate }\mp@subsup{x}{}{2}\mathrm{ to obtain 2x
3) Define Undiff(f) as the integral of a
Undiff(f):=integrate(f,x) function named \(f\) with respect to \(x\).
Undiff(2*x);
```



```
4) Integrate 2x to obtain }\mp@subsup{x}{}{2}\mathrm{ .
x
```


Notes:

```
- "Case" counts: Diff is a different name than diff!
- Maxima did not furnish a constant of integration !
```


Antiderivative as Undiff:

We have used several notations for the same idea. We know:

$$
\frac{d}{d x} \sin (x)=\cos (x)
$$

We could just as well write:

$$
\operatorname{Diff}(\sin (x))=\cos (x)
$$

and then take the antiderivative or "undiff" of both sides:

$$
\begin{aligned}
\operatorname{Undiff}(\operatorname{Diff}(\sin (x))) & =\operatorname{Undiff}(\cos (x)) \\
\sin (x) & =\operatorname{Undiff}(\cos (x)) \\
\sin (x) & =\int \cos (x) d x
\end{aligned}
$$

This is what we do with the integrate command in Maxima ${ }^{\text {TM }}$.

Adding a Constant in Maxima ${ }^{\text {TM }}$:

```
Diff(f):=diff(f,x);
Diff(f):= diff(f,X)
```

Diff (sin (x)) ;
$\cos (X)$
Undiff (f) : =integrate (f, x)
Undiff($f):=$ integrate $(f, x)+C$
Undiff (cos (x));
$C+\sin (x)$

1) Define Diff(f) as the derivative of a function named f with respect to x.
2) Differentiate $\sin (x)$ to obtain $\cos (x)$
3) Define Undiff(f) as the integral of a function named f with respect to x PLUS a constant of integration.
4) Integrate $\cos (x)$ to obtain $\sin (x)+C$.

Diff Sine, Undiff Cosine in GX™:

Exercises:

1) Open the example, drag point labeled C.
2) Note that when we integrate we must always introduce a constant of integration.

By adding the constant we preserve the inverse.

The Antiderivative Power Law $\mathrm{n}=1$:

The power law states:

$$
\frac{d}{d x} x^{n}=n \cdot x^{n-1}
$$

For the special case of $n=1$ we have:

$$
\frac{d}{d x} x^{1}=1 \cdot x^{1-1}=1 \cdot x^{0}=1 \cdot 1=1
$$

We can write this as: $\operatorname{Diff}(x)=1$
And Undiff both sides:

$$
\begin{aligned}
U \operatorname{ndiff}(\operatorname{Diff}(x)) & =\operatorname{Undiff}(1)=x+C \\
\int 1 d x & =\int d x=x+C
\end{aligned}
$$

The Antiderivative Power Law $\mathrm{n}=2$:

For the case of $\mathrm{n}=2$ we have:

$$
\frac{d}{d x} x^{2}=2 \cdot x^{2-1}=2 \cdot x^{1}=2 x
$$

We can write this as:

$$
\frac{\operatorname{Diff}\left(x^{2}\right)}{2}=x
$$

And Undiff both sides:

$$
\begin{aligned}
\operatorname{Undiff}\left(\frac{\operatorname{Diff}\left(x^{2}\right)}{2}\right)=\operatorname{Undiff}(x) & =\frac{x^{2}}{2}+C \\
\int x d x & =\frac{x^{2}}{2}+C
\end{aligned}
$$

The Antiderivative Power Law $\mathrm{n}=3$:

For the case of $\mathrm{n}=3$ we have:

$$
\frac{d}{d x} x^{3}=3 \cdot x^{3-1}=3 x^{2}
$$

We can write this as:

$$
\frac{\operatorname{Diff}\left(x^{3}\right)}{3}=x^{2}
$$

And Undiff both sides:

$$
\begin{aligned}
\operatorname{Undiff}\left(\frac{\operatorname{Diff}\left(x^{3}\right)}{3}\right)=\operatorname{Undiff}\left(x^{2}\right) & =\frac{x^{3}}{3}+C \\
\int x^{2} d x & =\frac{x^{3}}{3}+C
\end{aligned}
$$

$$
\begin{gathered}
\iint f(x) d x=c \int f(x) d x \\
\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x \\
\hline \text { create_Iist (integrate }(f(x) \wedge n, x), n, 1,5) ; \\
{\left[\int f(x) d x, \int f(x)^{2} d x, \int f(x)^{3} d x, \int f(x)^{4} d x, \int f(x)^{5} d x\right]}
\end{gathered}
$$

End

