

Chapter 4: Rates and Extremes

Lecture	Topic
14	Rates of Change
15	Related Rates
16	Extrema - Maxima and Minima
17	Derivative Tests and Mean Value Theorem
18	Optimization

Inspiration

- Image courtesy MIT

Norbert Weiner 1894-1964
MITMathematician

Founded Cybernetics Formalized Feedback
Founded CommunicationTheory (with Nyquist, Shannon \& Pierce)

Studied with: KarlSchmidt
Bertrand Russell
G.W. Hardy

Worked on: Brownian Motion
Fourier Analysis

Iterated Equations:

Mathematical Feedback

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]_{n+1}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]_{n}
$$

250 Iterations

Derivative Tests and Mean Value Theorem:

In the previous lecture we learned techniques for finding the extrema of functions, the location of maximum and minimum values.

In this lecture we will extend the utility of these techniques and cover two important theorems: Rolle's Theorem and the Mean Value Theorem.

We will then use those in a practical application utilizing the sinc function.

After that we will look at concavity and other tests that yield insight into the functions whose behavior we seek to understand.

Rolle's Theorem

Proving Rolle's Theorem

Case I:

IF

$$
f(x)=\text { constant }
$$

THEN
$f^{\prime}(x)=0$,
AND
c is any x in [a..b]

Exercise:

1) Open the example.
2) Drag all six points notice truth unchanged.

IF $\quad f^{\prime}(x)=0$ for all x in [a..b]
THEN $f(x)$ is constant on [a..b]

Proving Rolle's Theorem

Case II:

$f(a)=f(b)$
$f(x)>f(a)$ for some x in [a..b]
max c is in [a..b]
By EVT $f(x)$ has a max c is in [a..b]

Thus $f(x)$ has a local max c and $f^{\prime}(c)$ exists and $f^{\prime}(c)=0$ by Fermat's Theorem

Exercise:

1) Open the example.
2) Drag all five points notice truth is unchanged.

Proving Rolle's Theorem

Case III:

$f(a)=f(b)$
$f(x)<f(a)$ for some x in [a..b]
$\min \mathrm{c}$ is in [a..b]
By EVT $f(x)$ has a min c is in [a..b]

Thus $f(x)$ has a local min c and $f^{\prime}(c)$ exists and $f^{\prime}(c)=0$ by Fermat's Theorem

Exercise:

1) Construct this case using Lecture17-ProvingRollesCase2.gx and Lecture17-ProvingRollesCase2.wxm

Proving Rolles Case 2: wxMaxima ${ }^{\text {TM }}$

$\begin{aligned} & \mathrm{f}(\mathrm{X}):=\mathrm{k}+\mathrm{X}^{\star} \mathrm{p}-(\mathrm{X}-\mathrm{h})^{\wedge} 2 ; \\ & \mathrm{f}(\mathrm{X}):=k+X p-(X-h)^{2} \end{aligned}$	1)	Write the equation.
$\begin{aligned} & f(a) ; \\ & a p+k-(a-h)^{2} \end{aligned}$	2)	Find f(a).
$\begin{aligned} & \mathrm{f}(\mathrm{~b}) ; \\ & b p+k-(b-h)^{2} \end{aligned}$	3)	Find $f(b)$.
$\begin{aligned} & \text { solve }(\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{~b}), \mathrm{b}) ; \\ & {[\mathrm{b}=p+2 h-a, b=a]} \end{aligned}$	4)	Find b such that $f(a)=f(b)$.
$\begin{aligned} & \text { f(second (first (\%))); } \\ & p(p+2 h-a)-(p+h-a)^{2}+k \end{aligned}$	5)	Back substitute to find $f(b)$.

Proving Rolles Case 2: wxMaxima ${ }^{\text {TM }}$

The Mean Value Theorem: MVT

MVT: Practical Example

If a car travels 60 miles in 60 minutes, averaging 1 mile per minute, then at some time its instantaneous speed was 1 mile per minute.

A Short Aside: Boxed Sine Wave

Sine and cosine are both periodic over an interval of width 2π. They make one complete cycle in 2π radians.
Notice that $\sin (x)$ is not symmetric about the vertical axis.

Exercises:

1) $\operatorname{Drag} A$.
2) What is the width of a cycle?
3) What is the height of a cycle?
4) For what value of Amplitude is the bounding region of a sine wave cycle square?

Boxed Cosine Wave and Sinc

Notice the symmetry of $\cos (x)$ and $\sin (x) / x$ about the vertical axis. How did a function containing $\sin (x)$ suddenly become symmetric?

Exercises:

1) Notice we did not get a full "cycle" with the sinc function.
2) Compute the width of the first cycle of $\operatorname{sinc}(x)=\sin (x) / x$.

Sinc Roots

We can find the zeroes of the sinc cycle by finding its roots. These are multiples of $n \cdot \pi$, coincident with the roots of $\sin (X)$.

Sinc Cycle Width
Finding the width of the central sinc cycle requires the critical points. These are not multiples of $n \cdot \pi$, nor are they zeroes of $\operatorname{sinc}(X)$.

Sinc Cycle Width
We can find the sinc cycle width by finding the roots named -1 and 1 . They are obtained by numerical solution using Newtons' Method.

Exercise:
Write the equation for the zeroes of the derivative of $\operatorname{sinc}(X)$.

Sinc Cycle Width

```
Y(X) :=A* sin (X)/X;
Y(X):=\frac{A\operatorname{sin}(X)}{X}
diff(Y(X),X);
Acos(X)
SOlve (%,X);
[X=}\frac{\operatorname{sin}(X)}{\operatorname{cos}(X)
```

Finding Critical Points does not always have a closed-form solution. Such cases require numerical techniques such as Newtons' Method shown here.

```
load(newton1) $
newton (tan (x) -x, x, 4.5,1/10^6);
4.493409457909247
newton(tan (x) -x, x,7.7,1/10^6);
7.725251836938464
```

Exercise: Where does the $\tan (x)$ term come from?

Increasing/Decreasing "ID" Test

1) If $f^{\prime}(x)>0$ on [a..b] then $f(x)$ is increasing on [a..b] 2) If $f^{\prime}(x)<0$ on [a..b] then $f(x)$ is decreasing on [a..b]

The First Derivative Test

1) If $f^{\prime}(x)$ changes + to - at c, then $f(x)$ has a local max at c
2) If $f^{\prime}(x)$ changes - to + at c, then $f(x)$ has a local min at c
3) If $f^{\prime}(x)$ does not flip sign at c, then $f(x)$ has NO max/min at c

Concavity Upward and Downward

1) If $f(x)$ lies above its tangents on [a, b] it is concave upward.
2) If $f(x)$ lies below its tangents on $[a, b]$ it is concave downward.

Inflexion Point

Concavity Test

1) If $f^{\prime \prime}(x)>0$ for on [a..b] then $f(x)$ is concave upward on [a..b]
2) If $f^{\prime \prime}(x)<0$ for on [a..b] then $f(x)$ is concave down on [a..b]

Inflection Point

$f^{\prime \prime}(x)$ changes sign as concavity changes from up to down. This is called an inflection point.

Second Derivative Test

1) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then $f(x)$ has a minimum at c.
2) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then $f(x)$ has a maximum at c.

Lecture 17 - Derivative Tests and Mean Value Theorem

