

Chapter 3: Derivatives

Lecture	Topic
10	Definition of the Derivative
11	Properties of the Derivative
12	Derivatives of Common Functions
13	Implicit Differentiation

Calculus Inspiration

David Hestenes
 PhD. UCLA

- GeometricAlgebra
- GeometricCalculus
- Relativity and Electron Theory
- Oersted Medal (2002)
- Cognitive Research in Science Education

Reproduced by kind permission of Nancy Hestenes

Geometric Algebras

Figure 7-2: Rotation of the vector \mathbf{x} through the rotor ba. The bivector part of the rotor (strong yellow) represents the plane of rotation, and the angle between the two vectors is half the rotation angle.

Symbolic Geometry

Polynomial Derivatives:
 EXERCISES:
 1) Drag a, b, c, d and e to produce x-axis crossings of 0,2 and 4 roots.
 2) When the derivative is zero, what happens to the original polynomial?
 3) Take turns setting a - e to zero to reproduce lower order polynomials.
 4) What happens to the derivative?
 $$
\begin{aligned} & Y=a+X \cdot b+X^{2} \cdot c+X^{3} \cdot d+X^{4} \cdot e \\ & Y^{\prime}=b+2 \cdot c \cdot X+3 \cdot d \cdot X^{2}+4 \cdot e \cdot X^{3} \end{aligned}
$$

Polar Derivatives Of Polar Functions

To find the derivative $d r / d \boldsymbol{\theta}$ of a curve $\boldsymbol{r}(\boldsymbol{\theta})$ we differentiate the curve in the usual fashion:

1) Consider a polynomial where the radius \boldsymbol{r} is a function of the angle $\boldsymbol{\theta}$:

$$
r(\theta)=a \theta^{0}+b \theta^{1}+c \theta^{2}+d \theta^{3}+e \theta^{4}
$$

2) We rewrite this to obtain the familiar looking form:

$$
r(\theta)=a \quad+b \theta+c \theta^{2}+d \theta^{3}+e \theta^{4}
$$

3) And differentiate in the usual fashion to obtain:

$$
\begin{aligned}
& r^{\prime}(\theta)=0 \quad+b+2 c \theta^{1}+3 d \theta^{2}+4 e \theta^{3} \\
& r^{\prime}(\theta)=\quad b+2 c \theta+3 d \theta^{2}+4 e \theta^{3}
\end{aligned}
$$

Polynomial Derivatives:

EXERCISES:

1) Take turns setting a - e to zero to reproduce lower order polynomials.
2) What happens to the derivative?
3) Write an expression for the slope of the

Rule:

$$
\frac{\mathrm{d}}{\mathrm{~d} x} k \cdot \theta^{n}=k \cdot n \cdot \theta^{n-1}
$$ line tangent to the original curve.

Lecture 12 -Derivatives of Common Functions

APPROXIMATION OF FUNCTIONS

It is often convenient to approximate one function using another function. When we are approximating a function in a neighborhood of the origin, the Maclaurin series is often used:

$$
f(x) \approx f(0)+f^{\prime}(0) \cdot x+\frac{f^{\prime \prime}(0)}{2!} \cdot x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} \cdot x^{3}+\ldots
$$

The series goes on, but when we are approximating a function with a polynomial of degree n , we know that there are only n non-zero derivatives, so we neglect the higher order terms.

Let's approximate the function $a+\sin (x)$ using the Maclaurin series:

$$
\begin{aligned}
a+\sin (x) & \approx a+\sin (0)+\cos (0) \cdot x+\frac{-\sin (0)}{2!} \cdot x^{2}+\frac{-\cos (0)}{3!} \cdot x^{3}+\ldots \\
& \approx a+0 \quad x+\quad 0 \quad+\frac{-1}{6} \cdot x^{3}+\ldots
\end{aligned}
$$

Derivative of Sine:

EXERCISES:

1) What do the parameters A, b, ω and ϕ control in the sine function?
2) Drag the control point for ($-\phi, b$).
3) Why doesn't the derivative curve move up and down?.
4) Why does - ϕ make a better control than ϕ ?
5) Drag the control point for ($1 / \omega, \mathrm{A}$). Why does $1 / \omega$ make a better control than ω ?
6) Revise the example to demonstrate the cosine and its derivative.

Derivative of Sine In Polar Coordinates:

EXERCISES:

1) What do the parameters A, b, ω and ϕ control in the polar sine function?
2) Drag the control point for ($-\phi, b$).
3) Drag the control point for $(1 / \omega, A)$.
4) Revise the example for cosine and its derivative in polar coordinates.

Lecture 12 -Derivatives of Common Functions

Derivative of Tangent:

EXERCISES:

1) What do the parameters A, b, ω and ϕ control in the tangent function?
2) Why doesn't the derivative curve move up and down when b is changed?
3) Drag the controls for $(-\phi, b)$ and ($1 / \omega, A$).
4) Revise the example to demonstrate the cotangent and derivative.
5) For what values does the function make a good approximation to its derivative?

Lecture 12 -Derivatives of Common Functions

Derivative of Inverse Sine:

EXERCISES:

1) Drag A and notice how the function and derivative change.
2) Rewrite the equations with $\mathrm{A}=1$.
3) Revise the example to demonstrate the inverse cosine and derivative.

Lecture12-DerivArcSin.gx

Derivative of Inverse Tangent:

EXERCISES:

1) Drag A and notice how the space formed by the grid is warped.
2) How would you address a coordinate system in this space?
3) Rewrite the equations with $\mathrm{A}=1$.
4) What are the faint horizontal gray lines?
5) What are the faint vertical orange lines?

Derivative of Polar Inverse Tangent:

EXERCISES:

1) Drag A and notice how the function and derivative change.
2) Rewrite the equations with $\mathrm{A}=1$.
3) What is the equation for the faint gray circle? Check your work with View \rightarrow Show All
4) Double-click the function and change its start and end angle to -20 and +20 , respectively.
What happens?

Cartesian Derivatives Of Polar Functions

To find the slope $d y / d x$ of the line tangent to a curve $\boldsymbol{r}(\boldsymbol{\theta})$ we follow a three step process:

1) Use the Cartesian coordinate system conversion:

$$
\begin{aligned}
& x=r(\theta) \cos \theta \\
& y=r(\theta) \sin \theta
\end{aligned}
$$

2) Differentiate both equations against $\boldsymbol{\theta}$:

$$
\begin{aligned}
& d x / d \theta=r^{\prime}(\theta) \cos \theta-r(\theta) \sin \theta \\
& d y / d \theta=r^{\prime}(\theta) \sin \theta+r(\theta) \cos \theta
\end{aligned}
$$

3) Divide the second equation by the first to obtain $d y / d x=$
$r r^{\prime}(\theta) \sin \theta+r(\theta) \cos \theta$

$$
r^{\prime}(\theta) \cos \theta-r(\theta) \sin \theta
$$

Cartesian Derivative Of Cochleoid

Here we use wxMaxima ${ }^{\text {™ }}$ to find the slope of the cochleoid - the polar sinc function:

```
(\%il) \(r(t):=\sin \left(a^{*} t\right) /(a * t) \$\)
(\%i2) \(x(t):=r(t) * \cos (t) \$\)
(\%i3) \(y(t):=r(t) * \sin (t) \$\)
(\%i4) tangent(t):=diff(y (t), t)/diff(x (t), t) \$
(\%i5) radcan(tangent (t));
(\%05) \(\frac{(\sin (t)-t \cos (t)) \sin (a t)-a t \sin (t) \cos (a t)}{(t \sin (t)+\cos (t)) \sin (a t)-a t \cos (t) \cos (a t)}\)
```

Note that \$ at the end of a line suppresses output, and that radcan simplifies the expression.

Cochleoid Function:

EXERCISES:

1) Drag r and notice how its value changes as a function of θ.
2) How is the slope of the blue tangent line calculated? Check your answer with View \rightarrow Show All.
3) Unlock a, drag it, and notice how the

Lecture12-CochleoidTangent.gx

Polar Form:

$$
r:=\frac{\sin (a \theta)}{a \theta}
$$

Lecture 12 -Derivatives of Common Functions

Lecture 12 -Derivatives of Common Functions

Derivative of

Polar Hyperbolic Sine:

EXERCISES:

1) Drag the control point for A.
2) Write the polar equation for the hyperbolic sine.
3) Revise the example to demonstrate the polar hyperbolic cosine and its derivative.

Lecture 12 -Derivatives of Common Functions

Derivative of

Polar Hyperbolic Sine:

EXERCISES:

1) Drag the control point for A.
2) Write the polar equation for the hyperbolic tangent in terms of exponentials.
3) Double-click on the function and change Start to -10. How does this change the curve display? Repeat with the derivative.
4) Revise the example to demonstrate the
polar hyperbolic cotangent and its derivative.

$$
\begin{aligned}
& r=A \cdot \tanh (T) \\
& r^{\prime}=\frac{A}{\cosh (T)^{2}}
\end{aligned}
$$

Derivative of Exponential \& Logarithm:

EXERCISES:

1) Drag the control point for (A, a) in a circle around the origin.
2) For what values of a are the exponential curve and its derivative curve identical?
3) Prove the exponential and logarithm curves are inverses.
4) Use the property of logarithms: $(\log (a b)=\log (a)+\log (b))$
to show that $\log (2 x)$ has the same as the derivative of $\log (x)$.

$$
\begin{aligned}
& Y=A \cdot \exp (X \cdot a) \\
& Y^{\prime}=A \cdot a \cdot \exp (X \cdot a)
\end{aligned}
$$

Lecture 12 -Derivatives of Common Functions

Derivative of nth Root Functions:

EXERCISES:

1) Drag the control point for ($0, n$) up and down past the origin.
2) For what values of n do the root curve and its derivative curves also appear to be inverses?
3) Set $\mathrm{n}=2$. What famous function and its derivative does this represent?

Lecture 12 -Derivatives of Common Functions

