

Chapter 3: Derivatives

LECTURE	Τορις
10	DEFINITION OF THE DERIVATIVE
11	PROPERTIES OF THE DERIVATIVE
12	DERIVATIVES OF COMMON FUNCTIONS
13	IMPLICIT DIFFERENTIATION

Inspiration

Richard Feynman 1918 - 1988

Quantum Electrodynamics - QED Feynman Diagrams Superfluidity of Helium 3

Won 1965 Nobel Prize

Noted for Clear Thinking and Presentation

Recommended Reading

Lecture 11 – Properties of the Derivative

<u>PRO – Compact</u> <u>CON – Hides Differential Form (dx)</u> Four Basic Operations: Leibniz Notation

d(f + g)/dx = df/dx + dg/dx d(f - g)/dx = df/dx - dg/dx $d(f \cdot g)/dx = df/dx \cdot g + dg/dx \cdot f$ $d(f / g)/dx = (df/dx \cdot g - dg/dx \cdot f)/g^{2}$

<u>PRO – Large</u> <u>CON – Reveals Differential Form</u>

(f + g)' = f' + g'

Example:

$$f = m_1 \cdot x + b_1 \rightarrow f' = m_1$$
$$g = m_2 \cdot x + b_2 \rightarrow g' = m_2$$

$$(f + g)' = m_1 + m_2$$

Derivative of Sum is Sum of Derivatives

Lecture 11 – Properties of the Derivative

Derivative of Sum is Sum of Derivatives

Lecture 11 – Properties of the Derivative

Derivative of Sum is Sum of Derivatives

Lecture 11 – Properties of the Derivative

Derivative of Difference is Difference of Derivatives

Product Rule: Two Parabolas
(f
$$\cdot$$
 g)' = f'g + g'f
Example:
f = a₁ \cdot x² + m₁ \cdot x + b₁ \rightarrow f' = 2a₁x + m₁
g = a₂ \cdot x² + m₂ \cdot x + b₂ \rightarrow g' = 2a₂x + m₂
(f \cdot g)' = (2a₁x + m₁) \cdot (a₂x² + m₂x + b₂) +
(2a₂x + m₂) \cdot (a₁x² + m₁x + b₁)
= 4a₁a₂x³ + 3 (a₁m₂ + a₂m₁) x² +
2 (m₁m₂+a₁b₂+a₂b₁) x + b₁m₂+b₂m₁

First Prime x Second + Second Prime x First

Quotient Rule: Two Lines $(f/g)' = (f'g - g'f)/g^2$ Example: $f = m_1 \cdot x + b_1 \rightarrow f' = m_1$ $g = m_2 \cdot x + b_2 \rightarrow g' = m_2$ $(f/g)' = (f'g - g'f)/g^2$ = $(m_1 (m_2 x + b_2) - m_2 (m_1 x + b_1)) / (m_2 x + b_2)^2$ = $(b_2m_1-b_1m_2) / (m_2^2x^2+2b_2m_2x+b_2^2)$

Definition of Differentiability

f(x) is differentiable on interval (a,b) if
 it is differentiable on every x in (a,b).

<u>Theorem</u>

```
if f(x) is differentiable at x = a,
  f(x) is continuous at x = a.
```


