

Chapter 3: Derivatives

Lecture	TOPIC
10	Definition of the Derivative
11	Properties of the Derivative
12	Derivatives of Common Functions
13	IMplicit Differentiation

Inspiration

[^0]
Properties of Derivatives

The Derivative of a Constant is Zero!

Properties of Derivatives

The Derivative of a Line is its Slope!

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{m \cdot(x+h)-m \cdot(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{m \cdot x+m \cdot h-m \cdot(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{m \cdot h}{h}=\lim _{h \rightarrow 0} m=m
\end{aligned}
$$

IF $f(x)=m x+b$ THEN $f^{\prime}(x)=d y / d x=m$
-12
The slope of a line is a CONSTANT.

$$
\text { IF } f(x)=m x+b \text { THEN } f^{\prime}(x)=d y / d x=m
$$

Four Basic Operations: Lagrange Notation

$$
\begin{aligned}
& (f+g)^{\prime}=f^{\prime}+g^{\prime} \\
& (f-g)^{\prime}=f^{\prime}-g^{\prime} \\
& (f \cdot g)^{\prime}=f^{\prime} g+g^{\prime} f \\
& (f / g)^{\prime}=\left(f^{\prime} g-g^{\prime} f\right) / g^{2}
\end{aligned}
$$

PRO-Compact
CON - Hides Differential Form (dx)

Four Basic Operations: Leibniz Notation

$$
\begin{aligned}
& d(f+g) / d x=d f / d x \quad+d g / d x \\
& d(f-g) / d x=d f / d x-d g / d x \\
& d(f \cdot g) / d x=d f / d x \cdot g+d g / d x \cdot f \\
& d(f / g) / d x=(d f / d x \cdot g-d g / d x \cdot f) / g^{2} \\
& \\
& \text { PRO-Large } \\
& \text { CON-Reveals Differential Form }
\end{aligned}
$$

Sum Rule: Two Lines

$(f+g)^{\prime}=f^{\prime}+g^{\prime}$
Example:

$$
\begin{aligned}
& f=m_{1} \cdot x+b_{1} \rightarrow f^{\prime}=m_{1} \\
& g=m_{2} \cdot x+b_{2} \rightarrow g^{\prime}=m_{2} \\
& (f+g)^{\prime}=m_{1}+m_{2}
\end{aligned}
$$

Derivative of Sum is Sum of Derivatives

Lecture 11 - Properties of the Derivative

Sum Rule: Line and Parabola

$(f+g)^{\prime}=f^{\prime}+g^{\prime}$
Example:

$$
\begin{array}{r}
f=\begin{array}{l}
m_{1} \cdot x+b_{1} \rightarrow f^{\prime}= \\
g=a \cdot x^{2}+m_{2} \cdot x+b_{2} \rightarrow g^{\prime}=2 a x+m_{2} \\
(f+g)^{\prime}=m_{1}+2 a x+m_{2}
\end{array} \\
\end{array}
$$

Derivative of Sum is Sum of Derivatives

Lecture 11 - Properties of the Derivative

Sum Rule: Two Parabolas

$$
(f+g)^{\prime}=f^{\prime}+g^{\prime}
$$

Example:

$$
\begin{aligned}
& f=a_{1} \cdot x^{2}+m_{1} \cdot x+b_{1} \rightarrow f^{\prime}=2 a_{1} x+m_{1} \\
& g=a_{2} \cdot x^{2}+m_{2} \cdot x+b_{2} \rightarrow g^{\prime}=2 a_{2} x+m_{2}
\end{aligned}
$$

$$
(f+g)^{\prime}=\text { EXERCISE }
$$

Derivative of Sum is Sum of Derivatives

Sum Rule: Line and Sine Wave

$(f+g)^{\prime}=f^{\prime}+g^{\prime}$
Example:

$$
\begin{aligned}
& \mathrm{f}=\mathrm{m} \cdot \mathrm{x}+\mathrm{b} \rightarrow \mathrm{f}^{\prime}=\mathrm{m} \\
& \mathrm{~g}=\mathrm{a} \cdot \sin (\mathrm{x}) \rightarrow \mathrm{g}^{\prime}=\mathrm{a} \cdot \cos (\mathrm{x})
\end{aligned}
$$

$(f+g)=m \cdot x+b+a \cdot \sin (x)$
$(f+g)^{\prime}=m+0+a \cdot \cos (x)$
Derivative of Sum is Sum of Derivatives

Lecture 11 - Properties of the Derivative

Difference Rule from Sum Rule

Prove:

$$
\begin{array}{ll}
(f-g)^{\prime}=f^{\prime}-g^{\prime} & \\
(f+h)^{\prime}=f^{\prime}+h^{\prime} & \text { Sum Rule } \\
(f-g)^{\prime}=f^{\prime}-g^{\prime} & \begin{array}{l}
\text { Let } h=-g \\
\text { QED }
\end{array}
\end{array}
$$

Product Rule: Two Lines

$$
(f \cdot g)^{\prime}=f^{\prime} g+g^{\prime} f
$$

Example:

$$
\begin{aligned}
& \mathrm{f}=\mathrm{m}_{1} \cdot \mathrm{x}+\mathrm{b}_{1} \rightarrow \mathrm{f}^{\prime}=\mathrm{m}_{1} \\
& \mathrm{~g}=\mathrm{m}_{2} \cdot \mathrm{x}+\mathrm{b}_{2} \rightarrow \mathrm{~g}^{\prime}=\mathrm{m}_{2} \\
& \begin{aligned}
(\mathrm{f} \cdot \mathrm{~g})^{\prime} & =\mathrm{m}_{1}\left(m_{2} \mathrm{x}+\mathrm{b}_{2}\right)+\mathrm{m}_{2}\left(\mathrm{~m}_{1} \mathrm{x}+\mathrm{b}_{1}\right) \\
& =m_{1} m_{2} \mathrm{x}+\mathrm{m}_{1} \mathrm{~b}_{2}+\mathrm{m}_{2} \mathrm{~m}_{1} \mathrm{x}+\mathrm{m}_{2} \mathrm{~b}_{1} \\
& =2 \cdot m_{1} m_{2} \mathrm{x}+\mathrm{m}_{1} \mathrm{~b}_{2}+\mathrm{m}_{2} \mathrm{~b}_{1}
\end{aligned}
\end{aligned}
$$

First Prime x Second + Second Prime x First

Product Rule: Two Parabolas

$$
(f \cdot g)^{\prime}=f^{\prime} g+g^{\prime} f
$$

Example:

$$
\begin{aligned}
f= & a_{1} \cdot x^{2}+m_{1} \cdot x+b_{1} \rightarrow f^{\prime}=2 a_{1} x+m_{1} \\
g= & a_{2} \cdot x^{2}+m_{2} \cdot x+b_{2} \rightarrow g^{\prime}=2 a_{2} x+m_{2} \\
(f \cdot g)^{\prime}= & \left(2 a_{1} x+m_{1}\right) \cdot\left(a_{2} x^{2}+m_{2} x+b_{2}\right)+ \\
& \left(2 a_{2} x+m_{2}\right) \cdot\left(a_{1} x^{2}+m_{1} x+b_{1}\right) \\
= & 4 a_{1} a_{2} x^{3}+3\left(a_{1} m_{2}+a_{2} m_{1}\right) x^{2}+ \\
& 2\left(m_{1} m_{2}+a_{1} b_{2}+a_{2} b_{1}\right) x+b_{1} m_{2}+b_{2} m_{1}
\end{aligned}
$$

Product Rule: Line and Sine Wave

$$
(f \cdot g)^{\prime}=f^{\prime} g+g^{\prime} f
$$

Example:

$$
\begin{aligned}
& f=m \cdot x+b \rightarrow f^{\prime}=m \\
& g=
\end{aligned} \quad \begin{aligned}
f i n(x) \rightarrow g^{\prime}=\cos (x)
\end{aligned} \quad \begin{aligned}
(f \cdot g)^{\prime} & =f^{\prime} g+g^{\prime} f \\
& =m \sin (x)+\cos (x)(m \cdot x+b)
\end{aligned}
$$

First Prime x Second + Second Prime x First

Product Rule: Line and Sine

$$
(f \cdot g)^{\prime}=f^{\prime} g+g^{\prime} f
$$

EXERCISES:

1) Vary parameters of each curve.
2) Write equation for each curve.

First Prime x Second + Second Prime x First

Product Rule: Two "Sine" Waves

$$
(f \cdot g)^{\prime}=f^{\prime} g+g^{\prime} f
$$

Example:

$$
\begin{aligned}
& f=\sin (x)-a \rightarrow f^{\prime}=\cos (x) \\
& g=\cos (x)-b \rightarrow g^{\prime}=-\sin (x) \\
& (f \cdot g)^{\prime}=f^{\prime} g+g^{\prime} f \\
& =\cos (x)(\cos (x)-b)+ \\
& -\sin (x)(\sin (x)-a) \\
& =-\sin (x)^{2}+a \cdot \sin (x)+ \\
& \cos (x)^{2}-b \cdot \cos (x)
\end{aligned}
$$

Product Rule: Two Sine Waves

$(土 \cdot)^{\prime}=f^{\prime \prime} g+g^{\prime} f$

EXERCISES:

1) Vary parameters of each curve.
2) Why are g and ($f \cdot g)^{\prime}$ coincident at $x=0$?

Quotient Rule: Two Lines

$$
(f / g)^{\prime}=\left(f^{\prime} g-g^{\prime} f\right) / g^{2}
$$

Example:

$$
\begin{aligned}
f & =m_{1} \cdot x+b_{1} \rightarrow f^{\prime}=m_{1} \\
g & =m_{2} \cdot x+b_{2} \rightarrow g^{\prime}=m_{2}
\end{aligned} \quad \begin{aligned}
(f / g)^{\prime} & =\left(f^{\prime} g-g^{\prime} f\right) / g^{2} \\
& =\left(m_{1}\left(m_{2} x+b_{2}\right)-m_{2}\left(m_{1} x+b_{1}\right)\right) /\left(m_{2} x+b_{2}\right)^{2} \\
& =\left(b_{2} m_{1}-b_{1} m_{2}\right) /\left(m_{2}^{2} x^{2}+2 b_{2} m_{2} x+b_{2}{ }^{2}\right)
\end{aligned}
$$

Quotient Rule: Two Parabolas

$$
(f / g)^{\prime}=\left(f^{\prime} g-g^{\prime} f\right) / g^{2}
$$

Example:

$$
\begin{gathered}
f=a_{1} \cdot x^{2}+b_{1} \cdot x+c_{1} \rightarrow f^{\prime}=2 a_{1} x+b_{1} \\
g=a_{2} \cdot x^{2}+b_{2} \cdot x+c_{2} \rightarrow g^{\prime}=2 a_{2} x+b_{2} \\
(f / g)^{\prime}=\left(\begin{array}{l}
\left(2 a_{1} x+b_{1}\right)\left(a_{2} x^{2}+b_{2} x+c_{2}\right)- \\
\left(2 a_{2} x+b_{2}\right)\left(a_{1} x^{2}+b_{1} x+c_{1}\right)
\end{array}\right. \\
\left(a_{2} \cdot x^{2}+b_{2} \cdot x+c_{2}\right)^{2}
\end{gathered}
$$

Quotient Rule: Two Parabolas

 $(f / g)^{\prime}=\left(f^{\prime} g-g^{\prime} f\right) / g^{2}$ EXERCISES:1) Vary the parameters of fand g.
2) What values create a bell-shaped curve?
3) Why does changing c1 and c2 leave the blue curve unchanged?
4) Reproduce the Two Line Case by setting a1 and a2 to zero.
5) How many distinct cases are there?
6) Use wxMaxima ${ }^{T M}$ to verify the formula for the blue curve.

Quotient Rule: Sine and Line $=$ Sinc Function

$(f / g)^{\prime}=\left(f^{\prime} g-g^{\prime} f\right) / g^{2}$
Example:

$$
\left.\begin{array}{rl}
f & =a \cdot \sin (x) \rightarrow f^{\prime}=a \cdot \cos (x) \\
g & = \\
x \rightarrow g^{\prime}=1
\end{array}\right] \begin{aligned}
(f / g) & =a \cdot \sin (x) / x=a \cdot \operatorname{sinc}(x) \\
(f / g)^{\prime} & =a\left(f^{\prime} g-g^{\prime} f\right) / g^{2} \\
& =a(\cos (x) \cdot x-1 \cdot \sin (x))) /(x)^{2} \\
& =a \cos (x) / x-a \sin (x) / x^{2}
\end{aligned}
$$

Quotient Rule: Sinc Function

$$
(f / g)^{\prime}=\left(f^{\prime} g-g^{\prime} f\right) / g^{2}
$$

EXERCISES:

1) Drag the red dot to animate amplitude.
2) Write the equation of the red curve.
3) Write the equation of the blue curve.
4) When the red curve is at a peak or valley where is the blue curve?
5) Check work with View \rightarrow Show All

The Chain Rule:

Given $f(g(x))$ then $f^{\prime}(x)=$ $d f / d x=d f / d g \cdot d g / d x$
iff f and g are differentiable.

The Chain Rule is recursive!

The Chain Rule:

Given $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ then $\mathrm{f}^{\prime}(\mathrm{x})=$

The Chain Rule:

Example 1: $f=\left(r^{2}-x^{2}\right)^{1 / 2}$ then $f^{\prime}=$

$$
d f / d x=d f / d g \cdot d g / d x
$$

Let $\quad g=\left(r^{2}-x^{2}\right)$
then $d g / d x=-2 x$
and $d f / d g=1 / 2(g)^{-1 / 2}$
so $d f / d x=1 / 2\left(r^{2}-x^{2}\right)^{-1 / 2} \cdot(-2 x)$
$=-x\left(r^{2}-x^{2}\right)^{-1 / 2}$

The Chain Rule:

Example 2: $f=\sin \left(x^{3} / k\right)$ then $f^{\prime}=$ $d f / d x=d f / d g \cdot d g / d x$

Let

$$
g=\left(x^{3} / k\right)
$$

then $d g / d x=3 x^{2} / k$
and $d f / d g=\cos (g)$
so $d f / d x=\cos \left(x^{3} / k\right) \cdot\left(3 x^{2} / k\right)$
$=\left(3 x^{2} / k\right) \cdot \cos \left(x^{3} / k\right)$

The Chain Rule

$d f / d x=d f / d g \cdot d g / d x$

1) Write green curve equation.
2) Check it with View \rightarrow Show All.
3) Change the value of k.
4) What happens to the function f ?
5) What happens to the derivative?
6) Zoom in and out using

The Chain Rule:

Example 3: $\mathrm{f}=(\mathrm{x}+\sin (\mathrm{x}))^{\mathrm{n}}$ then f^{\prime}

$$
\mathrm{df} / \mathrm{dx}=\mathrm{df} / \mathrm{dg} \cdot \mathrm{dg} / \mathrm{dx}
$$

Let $\quad g=(x+\sin (x))$
then $d g / d x=(1+\cos (x))$
and $d f / d g=n(g(x))^{n-1}$
so $d f / d x=\left(n(g(x))^{n-1}\right) \cdot(1+\cos (x))$

$$
=n(1+\cos (x)) \cdot(x+\sin (x))^{n-1}
$$

The Chain Rule: Recursion
Example 4:

$$
\begin{aligned}
& f=A \cdot \sin (\cos (\sin (x))) \\
& f^{\prime}=d f / d x=d f / d g \cdot d g / d h \cdot d h / d x
\end{aligned}
$$

Let $h=\sin (x) \rightarrow d h / d x=\cos (x)$

$$
\begin{aligned}
& g=\cos (h) \rightarrow d g / d h=-\sin (h) \\
& f=A \cdot \sin (g) \rightarrow d f / d g=A \cdot \cos (g)
\end{aligned}
$$

Thus
$d f / d x=(A \cdot \cos (g)) \cdot(-\sin (h)) \cdot(\cos (x))$
$=-A \cdot \cos (x) \sin (\sin (x)) \cos (\cos (\sin (x)))$

The Chain Rule

1) Add a green curve for $g(h)$.
2) Add a cyan curve for $h(x)$.
3) What happens when A is changed using the red dot?
$A 0^{15} \quad Y=A \cdot \sin (\cos (\sin (X)))$

Chain Rule with Power Rule

Example 5:

$$
\begin{aligned}
& \mathrm{f}=\mathrm{u}^{\mathrm{n}} \\
& \mathrm{u}=\sin (\mathrm{x})
\end{aligned}
$$

$$
f^{\prime}=\mathrm{df} / \mathrm{dx}=\mathrm{df} / \mathrm{du} \cdot \mathrm{du} / \mathrm{dx}
$$

$$
d f / d x=d\left(u^{n}\right) / d x=n \cdot u^{n-1} \cdot d u / d x
$$

$$
=\mathrm{n} \cdot \mathrm{u}^{\mathrm{n}-1} \cdot \cos (\mathrm{x})
$$

$$
=n \cdot \sin (x)^{n-1} \cdot \cos (x)
$$

Chain Rule with Power Rule

$d f / d x=d f / d u \cdot d u / d x$

EXERCISES:

1) Use the Variables Dialog to set n to integer values of 1,2 and 3 .
2) What happens to the function f ?
3) What happens to the derivative f^{\prime} ?
4) What happens when n is changed continuously by dragging the red dot?

$$
Y^{\prime}=n \cdot \sin (X)^{-1+n} \cdot \cos (X)
$$

Definition of Differentiability

$f(x)$ is differentiable at $x=a$ if $f^{\prime}(a)$ exists.
$f(x)$ is differentiable on interval (a,b) if it is differentiable on every x in (a,b).

Theorem
if $f(x)$ is differentiable at $x=a$, $f(x)$ is continuous at $x=a$.

Feynman Diagrams

Strong Interaction
End

Lecture 11 - Properties of the Derivative

[^0]: Richard Feynman
 1918-1988
 Quantum Electrodynamics - QED
 Feynman Diagrams
 Superfluidity of Helium 3
 Won 1965 Nobel Prize

 Noted for Clear Thinking and Presentation
 Recommended Reading

