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Calculus Inspiration

- Courtesy Nederlands Mathematisch Congress 
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Freek Wiedijk is a Dutch computational mathematician who is keeping a list of 
how many  of Top 100 Mathematical Theorems, have been proven by machine. 

His contributions are significant because the machine proof of a mathematical 
theorem eliminates guesswork about hidden assumptions that often characterize 
human proofs. He has also kept track of which systems have been used to 
perform the proofs and their relative success.

His master’s thesis concerned the geometry of supergravity which he terms 
“mathematical physics” and his Ph.D. thesis addressed conservativity in modular 
specifications, or “mathematical computer science” as he puts it.

He has written on comparing automated theorem proving systems and his work is 
quite relevant to the present topic, “Precise Definition of the Limit”, because it is 
one of the definitions that made calculus possible.

Calculus Inspiration
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In mathematics, science and software:

Positive and Negative Controls
Are Your Best Friend.

- Barry Hurlburt, Ph.D.

Preamble: Controls and Experiments
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The Expectation of
A Known and Repeatable Output

For a Given Input

Definition: Control
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Produces a repeatable non-null output for a given 
non-null input.  Something happens, and that 
something therefore exists, and that  something one 
can observe and measure.

You get the same answer every time you repeat
the experiment.

Positive Control
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Produces no output or a repeatable null output for a 
null input.

You still get the same answer every time you repeat
the experiment.

Negative Control
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Positive Control:
Enter 2 + 21 on a certain calculator and press =.
Expected result: 23 is displayed.

If you don’t get 23, the positive control is informing 
you that the calculator doesn’t work as expected.

Negative Control:
You turn the calculator off.
If it turns on and starts calculating, the negative 
control is informing you that the calculator doesn’t 
work (and is possibly possessed!)

Example: Positive and Negative Control
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Mathematicians and scientists devise experiments to 
discover the functional rules governing systems of 
interest.

An experiment can be numerical, symbolic, 
geometric, physical, chemical, mental, etc.

Experiments Reveal Functional Properties
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This true meaning of this definition has traditionally been difficult to teach and to learn. The 
advent of symbolic geometry makes it much easier to understand. It took 150 years for the 
definition to be clarified, because several things are happening at once. The definition itself is 
a functional machine for generating proofs. For a quick and useful introduction to types of 
proofs see en.wikipedia.org/wiki/Mathematical_proof.

We saw earlier, how the limit process takes a function as input and when substitution is 
used, produces another function, often simpler, as output. 

We will first give the precise definition of the limit in symbolic form. Then we will work 
through some interactive examples that will clarify exactly what it means:

The limit( f(x), xa) = L exists iff

Given an  > 0, there exists a  > 0 such that:

| x – a | <  implies | f(x) – L| < 

For any x  a in the domain of f.

The Precise Definition of the Limit
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The expression:

limit( f(x),  x  a)  =  L exists iff   given an  > 0, there exists a   > 0  such that:

| x – a | <  implies |L - f(x)|  <  

For any x  a in the domain of f.

The Precise Definition of the Limit – cont.
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f(x)=2x+1
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Precise Definition of Limit: PDL
Lecture09-PreciseDefOfLimit1.gx

Starting simply, consider the limit of the 
linear function:

limit(2x+1, x2) =5

Using substitution we obtain the value 5 
for the limit. Proving this is true requires 
the definition.

EXERCISES:

1) Open the example file shown.

2) Drag the value of a and notice how 
the limit L changes.

3) Drag the envelope boundaries
a  , L  and notice how the box 
bounding the point (a, L) changes.
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PDL- Spreadsheet

Using a spreadsheet we can build a numerical version of this proof that works for all linear 
cases. This is shown on the following page. User inputs are highlighted in yellow boxes.

EXERCISES:

1) Open the spreadsheet example file Lecture09-PreciseDefOfLimit1.xls.

2) Change the of slope of f(x) = 2x+1 from 2 to 3.
Notice how the change percolates through the proof. Note especially how  and 
are related. This relationship is crucial for the meaning of the proof.

3) Change the b-value or y-intercept of f(x) = 3x+1 from 1 to 0.
Does the constant’s value change the ,  relationship. Why is this so? 

4) Change the limit value from x2 to x4.
Does this affect the values in the proof and the relationship between  and  ?

5) Change the variable x to the variable t. What happens to the proof?
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Lecture09-PreciseDefOfLimit1.xls



Lecture 9 –Precise Definition of The Limit 
16 

f(x)=mx+b
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Precise Definition of Limit
Lecture09-PreciseDefOfLimit2.gx

We can generalize the linear function to:

limit(mx+b, xa) =L

EXERCISES:

1) Open the example file shown.

2) Drag the value of a and notice how 
the limit L changes.

3) Drag the envelope boundaries
a  , L  and notice how the box 
bounding about the point (a, L) 
changes.

4) Change the values of m and b by 
dragging them. 
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In reality, the PDL provides a bounding box around the point (a, L).

The delta-epsilon machine provides two essentials:

1) A method for finding this bounding box.
2) The assertion that if the bounding box can be found for all  and  that the limit exits.

The “trick” to PDL is solving the expression | f(x) – L | for |x – a|. 

When we do, it is possible to express  in terms of , and vica versa. The resulting solution 
enables us to draw the sides of the bounding box. If you can draw it, you can understand it.

We have worked through the linear case, now let’s spreadsheet a quadratic form:

The limit( A + B x + C x2, x  a) = L

We will modify our Geometry Expressions machinery and then do some examples.

PDL as Bounding Box Recipe
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Y = A + B x + C x 2̂
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PDL: General Quadratic Case
Lecture09-PreciseDefOfLimit3.gx

We can generalize the linear function to a 
quadratic by adding a third term. The 
coefficient names are written in upper 
case.  We write:

Y = A + B x + C x2

Looking at the graph, notice
The x-intervals of a  are
equally spaced, while
the intervals in y of L  are not.

EXERCISE

Drag the values of A, B and C and 
notice how the shape of the curve 
changes. Then drag the  and 
bounds and note how the bounding 
box changes. (Drag slowly!)
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PDL- Quadratic Spreadsheet

We now construct a numerical version of the quadratic proof that works for all real cases. 
This is shown on the following page. 

EXERCISES:

1) Open the spreadsheet example file Lecture09-PreciseDefOfLimit2.xls.

2) Change the of values of the coefficients, A, B and C.

3) Some values of A, B and C result in spreadsheet errors, plot these cases in 
Geometry Expressions™ and state why the errors occur.  How might they be 
eliminated?
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Lecture09-PreciseDefOfLimit2.xls
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PDL: Exploring Linear and Quadratic Cases

1) limit(5, x  7) = 5

2) limit(b, x  a) = b

3) limit(a, x  b) = a

4) limit(x, x  3) = 3

5) limit(x, x  c) = c

6) limit(a  x, x  3) = a  3

7) limit(a  x, x  b) = a  b

8) limit(m  x, x  c) = m  c

9) limit( (x + 3), x  a) = a + 3

10) limit( (x + b), x  a) ) = a + b

11) limit( (x + a), x  b) ) = b + a

12) limit( (x + a), x  b ) = limit( (x + b), xa )

13) limit( 2 (x + a), x  b) = 2(b + a)

14) limit ( k (x + a), x  b) = k(b + a)

15) limit ( (x + 1) (x + 2), x  a) = (a + 1) (a + 2)

16) limit ( (x + a) (x + b), x  c) = (c + a) (c + b)

17) limit ( (x + 1) (x - 2), x  a) = (a + 1) (a - 2)

18) limit ( (x + a) (x - b), x  c) = (c + a) (c - b)

Symbolic geometry spares us the suffering expended over the years grappling with PDL. To 
complete your understanding use the examples to investigate the following.

EXERCISES
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The Triangle Inequality: Scalar
Lecture09-TriangleInequalityScalar.gx

The triangle inequality states that the length of any 
side of a triangle is less than the length of the two 
remaining sides. This can be written:

c < a + b

It is a restatement of the idea that the shortest 
distance between any two points is a straight line.

Notice that the length of a side is never negative.

EXERCISES:

1) Open the example file and drag a gray dot.

2) Its it possible to make c longer than a + b?

3) When c = a + b do you still have a triangle?
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The Triangle Inequality: Vector
Lecture09-TriangleInequalityVector.gx

Vectors each with an (x, y) component can be 
added by placing them head to tail.

Here the vector A is added to B to give C such that

C = A + B

The length of a vector can be written as :

length(C)     OR         C 

We can restate the triangle inequality as:

 C    A  +  B 

But we can substitute C = A + B to obtain:

 A + B    A  +  B 

||A||

BC

||C||||B||

A
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The Absolute Value: An Identity
Lecture09-AbsoluteValueIdentity.gx

For any two real numbers , a and b :

|a + b|  |a| + |b|

Note the similarity of this expression to the previous one. There is a 

difference however, a and b can be negative. For the result to be 

meaningful  a or b must be negative, otherwise the identity 

degenerates to:

a + b = a + b

The identity is often called the Triangle Inequality, even though it has 
nothing to do with a triangle, as the lengths of a triangle’s sides are 
always positive.

EXERCISES:

1) Open the example file shown and drag any gray dot.

2) Is it possible to make |a + b| longer than |a| + |b|?
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Using PDL for Piecewise Functions
Lecture09-PreciseDefOfLimit4.gx

Problem:

f(x) = x          if x < 2
x + b   if x  2

What is the limit(f(x), x2)  as b varies?

EXERCISES:

1) Open the example file shown.

2) Drag the envelope boundaries
a  , L  and notice how the box 
bounding about the point (a, L) changes.

3) Use the PDL and the triangle inequality to 
show those cases for which the limit exists.
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1. Assume  L  exists.
2. Then for each  > 0   > 0 :
3. If 0 < |x-1| <  then |f(x)- L| < .
4. Find one  > 0  such that no  > 0 works.
5. Contradiction, Statement 1 is false! 
6. Therefore L  cannot exist.

 - Stands for “there exists”

Sketch of A Proof By Contradiction
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