Léarning Calculus With Geometry Expressions ${ }^{\text {II }}$	

Chapter 2: Limits

LeCTURE	TOPIC
5	FINITE LIMITS
6	INFINITE LIMITS
7	CONTINUITY
8	DISCONTINUITY
9	PRECISE DEFINITION OF THE LIMIT

Inspiration

Isaac Newton

Three Laws That Would Change the World.
Besides inventing calculus, making advances in optics, cracking the rainbow and numerous other contributions, Isaac Newton discovered three laws of motion that would forever alter man's ability to understand, predict and control.

These three laws of motion are:

1) Objects move in a straight line unless forced otherwise.
2) $F=m \frac{d^{2} x}{d t^{2}}$
3) For every action there is an equal and opposite reaction.

Einstein and others would later perfect these laws for near-light speeds, but this was the beginning...

Infinite Limits

Consider the Limit whose name is L below:

$$
L=\operatorname{limit}_{x \rightarrow 0} \frac{1}{x^{2}}
$$

We would like to discover the value of L :
Substitution yields $\frac{1}{0}$, an indeterminate form.
Factoring doesn't work, as the equation is already in simplest form.

So we DRAW f , MARK $\mathrm{x}=\mathrm{a}$, and FIND that $L=+\infty$.

In this case, L has the same value whether we approach from the left or the right!

-8	-6	-4	-2

Infinite Limits

The limiting y-value of the function can be infinite as shown in the example on the right.

The \boldsymbol{x}-value can also be allowed to approach infinity.

For example the limit L defined as:

$$
L=\operatorname{limit}_{x \rightarrow \infty} \frac{1}{x}
$$

exists and has a finite value.

EXERCISE
Use the DRAW, MARK, FIND method to discover the value of L for the case above. Draw the result using Geometry Expressions ${ }^{T M}$.

One-Sided Limits At $x=0$

When we take the limit, we think of x as starting at some arbitrary value and approaching the limiting value.

If we approach the limit as $x \rightarrow 0$ from values less than zero, we write:

$$
\operatorname{limit}_{x \rightarrow 0^{-}} f(x)=f(0)
$$

and we say, "The limit of $f(x)$ as \boldsymbol{x} goes to $\boldsymbol{0}$ from the left."

If we approach the limit as $x \rightarrow 0$ from values greater than zero, we write:

$$
\underset{x \rightarrow 0^{+}}{\operatorname{limit} f(x)}=f(0)
$$

and we say, "The limit of $f(x)$ as \boldsymbol{x} goes to $\boldsymbol{0}$ from the right."

One-Sided Limits at $\mathrm{x}=\mathrm{a}$

When we take the limit, we think of x as starting at some arbitrary value and approaching the limiting value.

If we approach the limit as $x \rightarrow$ a from the left, we write:

$$
\begin{gathered}
\text { limit } f(x)=f(a) \\
x \rightarrow a^{-}
\end{gathered}
$$

and we say, "The limit of $f(x)$ as \boldsymbol{x} goes to \boldsymbol{a} from the left."
If we approach the limit as $x \rightarrow$ a from the right, we write:

$$
\underset{x \rightarrow a^{+}}{\operatorname{limit} f(x)}=f(a)
$$

and we say, "The limit of $f(x)$ as \boldsymbol{x} goes to \boldsymbol{a} from the right."

Interval Algebra

One can specify an interval on the real valued line by the notation:
$[a, b]$ if the interval is closed and includes the end values a and b.
(a, b) if the interval is open and does not include the end values a and b.
$[a, b)$ if the interval is closed on the left and open on the right with respect to a and b.
$(a, b]$ if the interval is open on the left and closed on the right with respect to a and b.
The numbers a and b that constitute the boundaries of the interval can be finite or infinite. When a boundary is infinite, the interval must be open on that side, since there are different sizes of infinity.

Lecture 6 - Infinite Limits

Expressions in Interval Algebra

One can give an interval a name, like $\mathrm{i} A B=[2,3)$
One can combine intervals using the Boolean operators of AND, OR, \& NOT.

Boolean combinations of intervals are not closed with respect to intervals themselves:
For example $\operatorname{NOT}(2,3]=(-\infty, 2]$ AND $(3,+\infty)$
However they can be simplified to the simplest possible Boolean expression.

Some Boolean expressions will collapse to an interval.
For example NOT($(-\infty, 2]$ AND $(3,+\infty))=(2,3]$
Expressions that don't can be evaluated piecewise, with the Boolean relationship retained.
Intervals are useful for fuzzy logic, numerical ideas and representing uncertainty.

Vertical Asymptotes

We can also define the notion of a vertical asymptote.

In this case we use the one-sided limit.
The one-sided limit is written:
$L=\operatorname{limit} f(x)$
$x \rightarrow 0^{+}$
and we say:
Lequals the limit as x goes to zerofrom the right, never actually reaching zero.

Said another way:
$f(x) \rightarrow L$, as $x \rightarrow 0^{+}$

x	-6	-4	-2	1	4	4

Lecture 6 - Infinite Limits

Slant Asymptotes

Whereas we just took the limit of the function itself in the horizontal asymptote case, in the slant case we take the limit of the function minus its slant asymptote.

For this example the slant asymptote is written:
$L=\operatorname{limit}((x+1 / x)-(x))=0$

$$
x \rightarrow \infty
$$

and we say:
Lequals the limit as x goes to positive infinity of the function $(x+1 / x)$ minus the function of its slant asymptote, $g(x)$ and in this case the limit is zero.

Said another way in shorthand:
$f(x)-g(x) \rightarrow L \rightarrow 0$, as $x \rightarrow \infty$

EXERCISES

1) This function has a vertical asymptote. How is its equation calculated?
2) In the explanation of slant asymptote a specific example was used. Write the general rule.
3) Change the example so the slant
asymptote rotates about the origin.
4) Change the example so the slant
asymptote rotates about the origin.
$Y=X+\frac{1}{X}$

Curved Asymptotes

In our previous example of slant asymptotes we noticed how one function could become asymptotic to another in the limit. There is no reason why an asymptote has to be a straight line, it can in fact be a curve itself.

Our shorthand gave a hint that this was true:
$f(x)-g(x) \rightarrow L \rightarrow 0$, as $x \rightarrow \infty$
We merely generalize $g(x)$ to include curves as well as lines.

Consider the right-handed limit written:
$L=\operatorname{limit}(f(x)-g(x))=0$
$x \rightarrow \infty$

We say:
Lequals the limit as x goes to positive infinity of the function $f(x)$ minus the function of its curved asymptote $g(x)$ and in this case the limit is zero.

EXERCISES

1) Write the left handed limit.
2) Are there other asymptotes? If so, write their equation(s).
3) Is the asymptotic relationship between $f(x)$ and $g(x)$ symmetric?
$Y=\frac{3+2 \cdot X+X^{2}}{20}$
$Y=\frac{4+3 \cdot X+2 \cdot X^{2}+X^{3}}{20 \cdot X}$

1
2

A Limit Theorem

We have worked in shorthand and in plain language. Now we will express our ideas as pure symbolic expressions:

If $a / b>0$ then:

$$
L=\operatorname{limit}_{x \rightarrow \infty}\left\{\frac{1}{x^{\frac{a}{b}}}\right\}=0
$$

If $\mathrm{a} / \mathrm{b}>0$ AND $x^{\frac{a}{b}}$ is defined for all x, then:
$L=\operatorname{limit}_{x \rightarrow-\infty}\left\{\frac{1}{x^{\frac{a}{b}}}\right\}=0$

1) Drag a and b in both positive and negative directions..
2) When does the function appear to go to zero in the limit.
3) Can you make the limit infinite?
4) Are there limits that are neither zero or infinite?

$$
Y=\frac{1}{X^{\frac{a}{b}}}
$$

$a / b>0$

Lecture 6 - Infinite Limits

