Learning
Calculus
With
Geometry
Expressions ${ }^{\text {m" }}$

Chapter 2: Limits

LeCTURE	TOPIC
$\mathbf{5}$	FINITE LIMITS
6	INFINITE LIMITS
7	CONTINUITY
8	DISCONTINUITY
9	PRECISE DEFINITION OF THE LIMIT

Inspiration

Photographerunknown.
Courtesy of the Archives of the Institute for Advanced Study, Princeton, NJ, USA.

Kurt Gödel, Ph. D.

Articulated Incompleteness and Undecideability. Ideas like Closure, only bigger.

Albert Einstein used to return to Princeton simply for the pleasure of "walking with Gödel in the garden."

Gödel upset the applecart, disrupting Bertrand Russell's and Alfred Whitehead's objective of codifying mathematical reasoning into one great self-consistent system. He did this by proving that in order for a system to be self-consistent one must first go outside the system. Why? One must establish the consistency of the rules of the original system before building on it. Thus an ever widening scope of systems must be examined and this process never terminates.

No limits!

A Free Computer Algebra Tool

Maxima -

A free download with rigorous tools for finding limits.

Limits of A Function

When taking the limit of a function $f(x)$, we write:

$$
\operatorname{limit}_{x \rightarrow a} f(x)=f(a)
$$

and we say, "The limit of $f(x)$ as x goes to a is $f(a)$ "
which means:
"Find the value of the function $f(x)$ as x goes to $a "$.
In this case $\mathrm{f}(\mathrm{x})=\mathrm{x} / 2$

So the limit of $x / 2$ as $x \rightarrow$ a is simply $a / 2$.

Taking the Limit

Three Steps:

1) $\operatorname{Draw} f(x)$
2) Mark $x=a$
3) Find $f(a)$

Taking the Limit Example

Limits of A Function
Exercises:

1) limit (x, x, a)
2) limit $\left(x^{2}, x, a\right)$
3) limit $(b x+c, x, a)$

Numerical Limits

Instead, evaluate the function NEAR the limiting value, above and below:

Factoring Limits

For functions $\mathrm{f}(\mathrm{x})$ with division, factoring sometimes works to find the limit.

$$
\operatorname{Limit}_{x \rightarrow 1} \frac{x-1}{x^{2}-1}=\frac{(x-1)}{(x-1)(x+1)}=\frac{1}{(x+1)}=\frac{1}{(1+1)}=\frac{1}{2}
$$

Limits of A Function - Laws

Limit of Sum =Sum of Limits
Limit of Difference = Diff. of Limits
Limit of Product = Prod. of Limits*
Limit of Quotient = Quo. of Limits

* includes constant case.

Defining Functions in Geometry Expressions ${ }^{\text {TM }}$

1) Define a function using the Draw \rightarrow Function button.

2) Change the expressions to that desired.

Limit of the Difference $=$ Difference of the Limits

Limit $(f(x), x, a)-\operatorname{Limit}(g(x), x, a)$
$=$
Limit $(f(x) \quad-\quad g(x), \quad x, a)$

Limit of the Quotient = Quotient of the Limits

$$
\backslash f(x)=x, g(x)=1 / x
$$

$\operatorname{Limit}(f(x), x, a) \div \operatorname{Limit}(g(x), x, a)$ =
$\operatorname{Limit}(f(x) \div g(x), \quad x, a)$

End

